11,473 research outputs found
Hubble Space Telescope WFPC2 Imaging of SN 1979C and Its Environment
The locations of supernovae in the local stellar and gaseous environment in
galaxies contain important clues to their progenitor stars. As part of a
program to study the environments of supernovae using Hubble Space Telescope
(HST) imaging data, we have examined the environment of the Type II-L SN 1979C
in NGC 4321 (M100). We place more rigorous constraints on the mass of the SN
progenitor, which may have had a mass M \approx 17--18 M_sun. Moreover, we have
recovered and measured the brightness of SN 1979C, m=23.37 in F439W (~B;
m_B(max) = 11.6), 17 years after explosion. .Comment: 18 pages, 8 figures, submitted to PAS
The thermal and two-particle stress-energy must be ill-defined on the 2-d Misner space chronology horizon
We show that an analogue of the (four dimensional) image sum method can be
used to reproduce the results, due to Krasnikov, that for the model of a real
massless scalar field on the initial globally hyperbolic region IGH of
two-dimensional Misner space there exist two-particle and thermal Hadamard
states (built on the conformal vacuum) such that the (expectation value of the
renormalised) stress-energy tensor in these states vanishes on IGH. However, we
shall prove that the conclusions of a general theorem by Kay, Radzikowski and
Wald still apply for these states. That is, in any of these states, for any
point b on the Cauchy horizon and any neighbourhood N of b, there exists at
least one pair of non-null related points (x,x'), with x and x' in the
intersection of IGH with N, such that (a suitably differentiated form of) its
two-point function is singular. (We prove this by showing that the two-point
functions of these states share the same singularities as the conformal vacuum
on which they are built.) In other words, the stress-energy tensor in any of
these states is necessarily ill-defined on the Cauchy horizon.Comment: 6 pages, LaTeX, RevTeX, no figure
Segond's fracture: a biomechanical cadaveric study using navigation
Background Segond’s fracture is a well-recognised radiological
sign of an anterior cruciate ligament (ACL) tear.
While previous studies evaluated the role of the anterolateral
ligament (ALL) and complex injuries on rotational
stability of the knee, there are no studies on the biomechanical
effect of Segond’s fracture in an ACL deficient
knee. The aim of this study was to evaluate the effect of a
Segond’s fracture on knee rotation stability as evaluated by
a navigation system in an ACL deficient knee.
Materials and methods Three different conditions were
tested on seven knee specimens: intact knee, ACL deficient
knee and ACL deficient knee with Segond’s fracture. Static
and dynamic measurements of anterior tibial translation
(ATT) and axial tibial rotation (ATR) were recorded by the
navigation system (2.2 OrthoPilot ACL navigation system
B. Braun Aesculap, Tuttlingen, Germany).
Results Static measurements at 30 showed that the mean
ATT at 30 of knee flexion was 5.1 ± 2.7 mm in the ACL
intact condition, 14.3 ± 3.1 mm after ACL cut
(P = 0.005), and 15.2 ± 3.6 mm after Segond’s fracture
(P = 0.08). The mean ATR at 30 of knee flexion was
20.7 ± 4.8 in the ACL intact condition, 26.9 ± 4.1 in
the ACL deficient knee (P[0.05) and 30.9 ± 3.8 after
Segond’s fracture (P = 0.005). Dynamic measurements
during the pivot-shift showed that the mean ATT was
7.2 ± 2.7 mm in the intact knee, 9.1 ± 3.3 mm in the
ACL deficient knee(P = 0.04) and 9.7 ± 4.3 mm in the
ACL deficient knee with Segond’s fracture (P = 0.07).
The mean ATR was 9.6 ± 1.8 in the intact knee,
12.3 ± 2.3 in the ACL deficient knee (P[0.05) and
19.1 ± 3.1 in the ACL deficient knee with Segond’s
lesion (P = 0.016).
Conclusion An isolated lesion of the ACL only affects
ATT during static and dynamic measurements, while the
addition of Segond’s fracture has a significant effect on
ATR in both static and dynamic execution of the pivot-shift
test, as evaluated with the aid of navigation
A new proof of the Bianchi type IX attractor theorem
We consider the dynamics towards the initial singularity of Bianchi type IX
vacuum and orthogonal perfect fluid models with a linear equation of state. The
`Bianchi type IX attractor theorem' states that the past asymptotic behavior of
generic type IX solutions is governed by Bianchi type I and II vacuum states
(Mixmaster attractor). We give a comparatively short and self-contained new
proof of this theorem. The proof we give is interesting in itself, but more
importantly it illustrates and emphasizes that type IX is special, and to some
extent misleading when one considers the broader context of generic models
without symmetries.Comment: 26 pages, 5 figure
Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway
<p>Abstract</p> <p>Background</p> <p>Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of <it>Plasmodium falciparum </it>CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2.</p> <p>Results</p> <p>We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.</p
Conformal regularization of Einstein's field equations
To study asymptotic structures, we regularize Einstein's field equations by
means of conformal transformations. The conformal factor is chosen so that it
carries a dimensional scale that captures crucial asymptotic features. By
choosing a conformal orthonormal frame we obtain a coupled system of
differential equations for a set of dimensionless variables, associated with
the conformal dimensionless metric, where the variables describe ratios with
respect to the chosen asymptotic scale structure. As examples, we describe some
explicit choices of conformal factors and coordinates appropriate for the
situation of a timelike congruence approaching a singularity. One choice is
shown to just slightly modify the so-called Hubble-normalized approach, and one
leads to dimensionless first order symmetric hyperbolic equations. We also
discuss differences and similarities with other conformal approaches in the
literature, as regards, e.g., isotropic singularities.Comment: New title plus corrections and text added. To appear in CQ
Observations of the Crab Nebula and its pulsar in the far-ultraviolet and in the optical
We present HST/STIS far-UV observations of the Crab nebula and its pulsar.
Broad, blueshifted absorption arising in the nebula is seen in C IV 1550,
reaching about 2500 km/s. This can be interpreted as evidence for a fast outer
shell, and we adopt a spherically symmetric model to constrain the properties
of this. We find that the density appears to decrease outward in the shell. A
lower limit to the mass is 0.3 solar masses with an accompanying kinetic energy
of 1.5EE{49} ergs. A massive 10^{51} erg shell cannot be excluded, but is less
likely if the density profile is much steeper than R^{-4} and the velocity is
<6000 km/s. The observations cover the region 1140-1720 A. With the time-tag
mode of the spectrograph we obtain the pulse profile. It is similar to that in
the near-UV, although the primary peak is marginally narrower. Together with
the near-UV data, and new optical data from NOT, our spectrum of the pulsar
covers the entire region from 1140-9250 A. Dereddening the spectrum gives a
flat spectrum for E(B-V)=0.52, R=3.1. This dereddened spectrum of the Crab
pulsar can be fitted by a power law with spectral index alpha_{\nu} = 0.11 +/-
0.04. The main uncertainty is the amount and characteristics of the interstel-
lar reddening, and we have investigated the dependence of \alpha_{\nu} on
E(B-V) and R. In the extended emission covered by our 25" x 0.5" slit in the
far-UV, we detect C IV 1550 and He II 1640 emission lines from the Crab nebula.
Several interstellar absorption lines are detected toward the pulsar. The Ly
alpha absorption indicates a column density of 3.0+/-0.5\EE{21} cm^{-2} of
neutral hydrogen, which agrees well with our estimate of E(B-V)=0.52 mag. Other
lines show no evidence of severe depletion of metals in atomic gas.Comment: 18 pages emulateapj style, including 10 figures. ApJ, accepte
Spatially self-similar locally rotationally symmetric perfect fluid models
Einstein's field equations for spatially self-similar locally rotationally
symmetric perfect fluid models are investigated. The field equations are
rewritten as a first order system of autonomous ordinary differential
equations. Dimensionless variables are chosen in such a way that the number of
equations in the coupled system of differential equations is reduced as far as
possible. The system is subsequently analyzed qualitatively for some of the
models. The nature of the singularities occurring in the models is discussed.Comment: 27 pages, pictures available at
  ftp://vanosf.physto.se/pub/figures/ssslrs.tar.g
Asymptotic silence-breaking singularities
We discuss three complementary aspects of scalar curvature singularities:
asymptotic causal properties, asymptotic Ricci and Weyl curvature, and
asymptotic spatial properties. We divide scalar curvature singularities into
two classes: so-called asymptotically silent singularities and non-generic
singularities that break asymptotic silence. The emphasis in this paper is on
the latter class which have not been previously discussed. We illustrate the
above aspects and concepts by describing the singularities of a number of
representative explicit perfect fluid solutions.Comment: 25 pages, 6 figure
Dynamical systems approach to G2 cosmology
In this paper we present a new approach for studying the dynamics of
spatially inhomogeneous cosmological models with one spatial degree of freedom.
By introducing suitable scale-invariant dependent variables we write the
evolution equations of the Einstein field equations as a system of autonomous
partial differential equations in first-order symmetric hyperbolic format,
whose explicit form depends on the choice of gauge. As a first application, we
show that the asymptotic behaviour near the cosmological initial singularity
can be given a simple geometrical description in terms of the local past
attractor on the boundary of the scale-invariant dynamical state space. The
analysis suggests the name ``asymptotic silence'' to describe the evolution of
the gravitational field near the cosmological initial singularity.Comment: 28 pages, 3 tables, 1 *.eps figure, LaTeX2e (10pt), matches version
  accepted for publication by Classical and Quantum Gravit
- …
