490 research outputs found

    Expanding perfect fluid generalizations of the C-metric

    Full text link
    We reexamine Petrov type D gravitational fields generated by a perfect fluid with spatially homogeneous energy density and in which the flow lines form a timelike non-shearing and non-rotating congruence. It is shown that the anisotropic such spacetimes, which comprise the vacuum C-metric as a limit case, can have \emph{non-zero} expansion, contrary to the conclusion in the original investigation by Barnes (Gen. Rel. Grav. 4, 105 (1973)). This class consists of cosmological models with generically one and at most two Killing vectors. We construct their line element and discuss some important properties. The methods used in this investigation incite to deduce testable criteria regarding shearfree normality and staticity op Petrov type DD spacetimes in general, which we add in an appendix.Comment: 16 pages, extended and amended versio

    Levi-Civita,Tullio

    Get PDF
    International audienceTullio Levi-Civita (29 March 1873 to 29 December 1941) has been an Italian mathematician and mathematical physicist, known above all for his work on the absolute differential calculus. Levi-Civita came from a rigorous and creative school of mathematical physicists and was a pupil of Gregorio Ricci-Curbastro. LeviCivita’s work included outstanding results in pure and applied mathematics and in celestial and analytic mechanics but also celebrated textbooks. These last, even those written in Italian, have influenced mathematical physicists all over the world.Levi-Civita has perfected some conceptual tools of great importance in modern science, particularly in general relativity, number theory, and continuum mechanics

    Operational significance of the deviation equation in relativistic geodesy

    Full text link
    Deviation equation: Second order differential equation for the 4-vector which measures the distance between reference points on neighboring world lines in spacetime manifolds. Relativistic geodesy: Science representing the Earth (or any planet), including the measurement of its gravitational field, in a four-dimensional curved spacetime using differential-geometric methods in the framework of Einstein's theory of gravitation (General Relativity).Comment: 9 pages, 4 figures, contribution to the "Encyclopedia of Geodesy". arXiv admin note: text overlap with arXiv:1811.1047

    On the Geometry of Surface Stress

    Full text link
    We present a fully general derivation of the Laplace--Young formula and discuss the interplay between the intrinsic surface geometry and the extrinsic one ensuing from the immersion of the surface in the ordinary euclidean three-dimensional space. We prove that the (reversible) work done in a general surface deformation can be expressed in terms of the surface stress tensor and the variation of the intrinsic surface metric

    Comments on photonic shells

    Full text link
    We investigate in detail the special case of an infinitely thin static cylindrical shell composed of counter-rotating photons on circular geodetical paths separating two distinct parts of Minkowski spacetimes--one inside and the other outside the shell--and compare it to a static disk shell formed by null particles counter-rotating on circular geodesics within the shell located between two sections of flat spacetime. One might ask whether the two cases are not, in fact, merely one

    Possible way out of the Hawking paradox: Erasing the information at the horizon

    Full text link
    We show that small deviations from spherical symmetry, described by means of exact solutions to Einstein equations, provide a mechanism to "bleach" the information about the collapsing body as it falls through the aparent horizon, thereby resolving the information loss paradox. The resulting picture and its implication related to the Landauer's principle in the presence of a gravitational field, is discussed.Comment: 11 pages, Latex. Some comments added to answer to some raised questions. Typos corected. Final version, to appear in Int. J. Modern. Phys.

    Levi-Civita cylinders with fractional angular deficit

    Full text link
    The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index {\alpha}. When the fractional index is continued into the negative {\alpha} region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.Comment: 5 figure

    Magnetic Strings in Dilaton Gravity

    Full text link
    First, I present two new classes of magnetic rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with Liouville-type potential. The first class of solutions yields a 4-dimensional spacetime with a longitudinal magnetic field generated by a static or spinning magnetic string. I find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when the rotation parameter does not vanish, there exists an electric field, and therefore the spinning string has a net electric charge which is proportional to the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. The net electric charge of the strings in these spacetimes is proportional to their velocities. Second, I obtain the (n+1n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. I argue that these solutions can present horizonless spacetimes with conic singularity, if one chooses the parameters of the solutions suitable. I also use the counterterm method and compute the conserved quantities of these spacetimes.Comment: 16 pages, no figure, references added, some minor correction

    Quasi-BiHamiltonian Systems and Separability

    Full text link
    Two quasi--biHamiltonian systems with three and four degrees of freedom are presented. These systems are shown to be separable in terms of Nijenhuis coordinates. Moreover the most general Pfaffian quasi-biHamiltonian system with an arbitrary number of degrees of freedom is constructed (in terms of Nijenhuis coordinates) and its separability is proved.Comment: 10 pages, AMS-LaTeX 1.1, to appear in J. Phys. A: Math. Gen. (May 1997
    corecore