242 research outputs found
Nodal/Antinodal Dichotomy and the Two Gaps of a Superconducting Doped Mott Insulator
We study the superconducting state of the hole-doped two-dimensional Hubbard
model using Cellular Dynamical Mean Field Theory, with the Lanczos method as
impurity solver. In the under-doped regime, we find a natural decomposition of
the one-particle (photoemission) energy-gap into two components. The gap in the
nodal regions, stemming from the anomalous self-energy, decreases with
decreasing doping. The antinodal gap has an additional contribution from the
normal component of the self-energy, inherited from the normal-state pseudogap,
and it increases as the Mott insulating phase is approached.Comment: Corrected typos, 4.5 pages, 4 figure
Odd-frequency superconductivity in dilute magnetic superconductors
We show that dilute magnetic impurities in a conventional superconductor give
origin to an odd-frequency component of superconductivity, manifesting itself
in Yu-Shiba-Rusinov bands forming within the bulk superconducting gap. Our
results are obtained in a general model solved within the dynamical mean field
theory. By exploiting a disorder analysis and the limit to a single impurity,
we are able to provide general expressions that can be used to extract
explicitly the odd-frequency superconducting function from scanning tunneling
measurements.Comment: 10 pages, 6 figure
Evolutionary Sequence Modeling for Discovery of Peptide Hormones
There are currently a large number of “orphan” G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure along the genomic sequence simultaneously with the temporal evolutionary path structure across species and show how such models can be used to discover new functional molecules, in particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic models. This computational method was used for identifying novel prohormones and the processed peptide sites by producing sequence alignments across many species at the functional-element level. Experimental results with an initial implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54 prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate the computational methodology, we present the basic molecular biological characterization of the novel putative peptide hormone, including its identification and regional localization in the brain. This species comparison, HMM-based computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of this approach will have a great impact on our understanding of GPCRs and associated pathways and help to identify new targets for drug development
Strong electronic correlations in superconducting organic charge transfer salts
We review the role of strong electronic correlations in
quasi--two-dimensional organic charge transfer salts such as (BEDT-TTF),
(BETS) and -[Pd(dmit)]. We begin by defining minimal
models for these materials. It is necessary to identify two classes of
material: the first class is strongly dimerised and is described by a
half-filled Hubbard model; the second class is not strongly dimerised and is
described by a quarter filled extended Hubbard model. We argue that these
models capture the essential physics of these materials. We explore the phase
diagram of the half-filled quasi--two-dimensional organic charge transfer
salts, focusing on the metallic and superconducting phases. We review work
showing that the metallic phase, which has both Fermi liquid and `bad metal'
regimes, is described both quantitatively and qualitatively by dynamical mean
field theory (DMFT). The phenomenology of the superconducting state is still a
matter of contention. We critically review the experimental situation, focusing
on the key experimental results that may distinguish between rival theories of
superconductivity, particularly probes of the pairing symmetry and measurements
of the superfluid stiffness. We then discuss some strongly correlated theories
of superconductivity, in particular, the resonating valence bond (RVB) theory
of superconductivity. We conclude by discussing some of the major challenges
currently facing the field.Comment: A review: 52 pages; 10 fig
Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems
Recent trends of ab initio studies and progress in methodologies for
electronic structure calculations of strongly correlated electron systems are
discussed. The interest for developing efficient methods is motivated by recent
discoveries and characterizations of strongly correlated electron materials and
by requirements for understanding mechanisms of intriguing phenomena beyond a
single-particle picture. A three-stage scheme is developed as renormalized
multi-scale solvers (RMS) utilizing the hierarchical electronic structure in
the energy space. It provides us with an ab initio downfolding of the global
band structure into low-energy effective models followed by low-energy solvers
for the models. The RMS method is illustrated with examples of several
materials. In particular, we overview cases such as dynamics of semiconductors,
transition metals and its compounds including iron-based superconductors and
perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an
invited review pape
- …