145 research outputs found

    Seeking for the leading actor on the cosmic stage: Galaxies versus Supermassive Black Holes

    Get PDF
    We present a Special Issue on the interplay of galaxies and Supermassive Black Holes (SMBHs) recently published in Advances in Astronomy. This is the introductory paper containing the motivation for this Special Issue together with a brief description of the articles which are part of the manuscript and the link to the entire book (http://www.hindawi.com/journals/aa/si/610485/). We hope this Special Issue will be useful for many astronomers who want to get an update on the current status of the AGN-Galaxy coevolution topic.Comment: 4 pages, published in Advances in Astronomy as Introductory paper to the Special Issue "Seeking for the leading actor on the cosmic stage: Galaxies versus SMBHs". The entire book can be downloaded as PDF here: http://www.hindawi.com/journals/aa/si/610485

    Spectral Energy Distributions of Type 1 AGN in XMM-COSMOS – II. Shape Evolution

    Get PDF
    The mid-infrared to ultraviolet (0.1 -- 10 μm) spectral energy distribution (SED) shapes of 407 X-ray-selected radio-quiet type 1 AGN in the wide-field ``Cosmic Evolution Survey (COSMOS) have been studied for signs of evolution. For a sub-sample of 200 radio-quiet quasars with black hole mass estimates and host galaxy corrections, we studied their mean SEDs as a function of a broad range of redshift, bolometric luminosity, black hole mass and Eddington ratio, and compared them with the Elvis et al. (1994, E94) type 1 AGN mean SED. We found that the mean SEDs in each bin are closely similar to each other, showing no statistical significant evidence of dependence on any of the analyzed parameters. We also measured the SED dispersion as a function of these four parameters, and found no significant dependencies. The dispersion of the XMM-COSMOS SEDs is generally larger than E94 SED dispersion in the ultraviolet, which might be due to the broader ``window function\u27\u27 for COSMOS quasars, and their X-ray based selection

    Chandra X-ray and Hubble Space Telescope Imaging of Optically Selected kiloparsec-Scale Binary Active Galactic Nuclei I. Nature of the Nuclear Ionizing Sources

    Full text link
    Kiloparsec-scale binary active galactic nuclei (AGNs) signal active supermassive black hole (SMBH) pairs in merging galaxies. Despite their significance, unambiguously confirmed cases remain scarce and most have been discovered serendipitously. In a previous systematic search, we optically identified four kpc-scale binary AGNs from candidates selected with double-peaked narrow emission lines at redshifts of 0.1--0.2. Here we present Chandra and Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging of these four systems. We critically examine and confirm the binary-AGN scenario for two of the four targets, by combining high angular resolution X-ray imaging spectroscopy with Chandra ACIS-S, better nuclear position constraints from WFC3 F105W imaging, and direct starburst estimates from WFC3 F336W imaging; for the other two targets, the existing data are still consistent with the binary-AGN scenario, but we cannot rule out the possibility of only one AGN ionizing gas in both merging galaxies. We find tentative evidence for a systematically smaller X-ray-to-[O III] luminosity ratio and/or higher Compton-thick fraction in optically selected kpc-scale binary AGNs than in single AGNs, possibly caused by a higher nuclear gas column due to mergers and/or a viewing angle bias related to the double-peak narrow line selection. While our result lends some further support to the general approach of optically identifying kpc-scale binary AGNs, it also highlights the challenge and ambiguity of X-ray confirmation.Comment: 18 emulateapj pages, 5 figures, ApJ in pres

    Cosmic evolution of supermassive black holes: A view into the next two decades

    Get PDF
    Astro2020 Science White Paper: et al.The discoveries made over the past 20 years by Chandra and XMM-Newton surveys in conjunction with multiwavelength imaging and spectroscopic data available in the same fields have significantly changed the view of the supermassive black hole (SMBH) and galaxy connection. These discoveries have opened up several exciting questions that are beyond the capabilities of current X-ray telescopes and will need to be addressed by observatories in the next two decades. As new observatories peer into the early Universe, we will begin to understand the physics and demographics of SMBH infancy (at z > 6) and investigate the influence of their accretion on the formation of the first galaxies (§ 2.1). We will also be able to understand the accretion and evolution over the cosmic history (at z ∼1–6) of the full population of black holes in galaxies, including low accretion rate, heavily obscured AGNs at luminosities beyond the reach of current X-ray surveys (§2.2 and §2.3), enabling us to resolve the connection between SMBH growth and their environment
    corecore