80 research outputs found

    Predictive factors for relapse in triple-negative breast cancer patients without pathological complete response after neoadjuvant chemotherapy

    Get PDF
    IntroductionTriple-negative breast cancer (TNBC) patients who do not obtain pathological complete response (pCR) after neoadjuvant chemotherapy (NACT) present higher rate of relapse and worse overall survival. Risk factors for relapse in this subset of patients are poorly characterized. This study aimed to identify the predictive factors for relapse in TNBC patients without pCR after NACT. MethodsWomen with TNBC treated with NACT from January 2008 to May 2020 at the Modena Cancer Center were included in the analysis. In patients without pCR, univariate and multivariable Cox analyses were used to determine factors predictive of relapse. ResultsWe identified 142 patients with a median follow-up of 55 months. After NACT, 62 patients obtained pCR (43.9%). Young age at diagnosis (<50 years) and high Ki-67 (20%) were signi!cantly associated with pCR. Lack of pCR after NACT resulted in worse 5-year event-free survival (EFS) and overall survival (OS). Factors independently predicting EFS in patients without pCR were the presence of multifocal disease [hazard ratio (HR), 3.77; 95% CI, 1.45-9.61; p=0.005] and residual cancer burden (RCB) III (HR, 3.04; 95% CI, 1.09-9.9; p=0.04). Neither germline BRCA status nor HER2-low expression were associated with relapse. DiscussionThese data can be used to stratify patients and potentially guide treatment decision-making, identifying appropriate candidates for treatment intensi!cation especially in neo-/adjuvant setting

    Biochemical diagnosis of aromatic-L-amino acid decarboxylase deficiency (AADCD) by assay of AADC activity in plasma using liquid chromatography/tandem mass spectrometry

    Get PDF
    Aromatic l-amino acid decarboxylase (AADC, EC 4.1.1.28) deficiency is a rare genetic disorder characterized by developmental delay, oculogyric crises, autonomic dysfunction and other problems, caused by biallelic mutations in the DDC gene leading to deficient activity of aromatic l-amino acid decarboxylase, an enzyme involved in the formation of important neurotransmitters, such as dopamine and serotonin. A clinical development program of gene therapy for AADC deficiency is ongoing. An important step for the success of this therapy is the early and precise identification of the affected individuals, but it has been estimated that around 90% of the cases remain undiagnosed. The availability measurement of the AADC activity is mandatory for an accurate biochemical diagnosis. Based on these statements, our objectives were to develop a liquid chromatography tandem mass spectrometry (LC-MS/MS) method suitable for the determination of the AADC activity, and to evaluate its capacity to confirm the deficiency of AADC in potential patients in Brazil. The AADC activities were measured in plasma samples of seven AADC deficient patients and 35 healthy controls, after enzymatic reaction and LC-MS/MS analysis of dopamine, the main reaction product. The results obtained showed clear discrimination between confirmed AADC deficient patients and healthy controls. The method presented here could be incorporated in the IEM laboratories for confirmation of the diagnosis of when a suspicion of AADC deficiency is present due to clinical signs and/or abnormal biomarkers, including when an increased level of 3-O-methyldopa (3-OMD) is found in dried blood spots (DBS) samples from high-risk patients or from newborn screening programs

    Diagnosing Hunter syndrome in pediatric practice: practical considerations and common pitfalls

    Get PDF
    Mucopolysaccharidosis II (MPS II), or Hunter syndrome, is an X-linked lysosomal storage disorder caused by a deficiency in the enzyme iduronate-2-sulfatase. Affected patients suffer progressive damage to multiple organ systems and early mortality. Two thirds of patients also manifest cognitive impairment and developmental delays. MPS II can be extremely difficult to diagnose before irreversible organ and tissue damage has occurred because of an insidious onset and the overlap in signs and symptoms with common childhood complaints. This is particularly true of patients without cognitive impairment (attenuated phenotype). Although not curative, early treatment with enzyme replacement therapy before irreversible organ damage has occurred may result in the greatest clinical benefit. Here, the signs, symptoms, and surgical history that should trigger suspicion of MPS II are described, and the diagnostic process is reviewed with a focus on practical considerations and the avoidance of common diagnostic pitfalls. Once a diagnosis is made, multidisciplinary management with an extended team of pediatric specialists is essential and should involve the pediatrician or family practice physician as facilitator and medical home for the patient and family. Conclusion: Because routine newborn screening is not yet available for MPS II, the involvement and awareness of pediatricians, family practice physicians, and pediatric specialists is critical for early identification, diagnosis, and referral in order to help optimize patient outcomes

    Mucopolysaccharidosis VI

    Get PDF
    Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 μg/mg creatinine), severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally <100 μg/mg creatinine), mild dysostosis multiplex, with death in the 4th or 5th decades. Other clinical findings may include cardiac valve disease, reduced pulmonary function, hepatosplenomegaly, sinusitis, otitis media, hearing loss, sleep apnea, corneal clouding, carpal tunnel disease, and inguinal or umbilical hernia. Although intellectual deficit is generally absent in MPS VI, central nervous system findings may include cervical cord compression caused by cervical spinal instability, meningeal thickening and/or bony stenosis, communicating hydrocephalus, optic nerve atrophy and blindness. The disorder is transmitted in an autosomal recessive manner and is caused by mutations in the ARSB gene, located in chromosome 5 (5q13-5q14). Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase) activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity <10% of the lower limit of normal in cultured fibroblasts or isolated leukocytes, and demonstration of a normal activity of a different sulfatase enzyme (to exclude multiple sulfatase deficiency). The finding of elevated urinary dermatan sulfate with the absence of heparan sulfate is supportive. In addition to multiple sulfatase deficiency, the differential diagnosis should also include other forms of MPS (MPS I, II IVA, VII), sialidosis and mucolipidosis. Before enzyme replacement therapy (ERT) with galsulfase (Naglazyme®), clinical management was limited to supportive care and hematopoietic stem cell transplantation. Galsulfase is now widely available and is a specific therapy providing improved endurance with an acceptable safety profile. Prognosis is variable depending on the age of onset, rate of disease progression, age at initiation of ERT and on the quality of the medical care provided

    Dendritic cells and interleukin-2: cytochemical and ultrastructural study

    Get PDF
    The aim of the present study was to verify the effect of IL-2 on dendritic cell (DC) differentiation. Various cytokines have been indicated as factors inducing DC differentiation, but no data about the interleukin-2 (IL-2) effect on DC differentiation have been reported. Monocytes isolated from peripheral blood were treated in vitro with the following factors: IL-2, IL- 4, GM-CSF and G-CSF alone or in combination. Morphological (also ultrastructural) and cytochemical observations were carried out starting from 3 to 21 days of treatment. The results indicate that the differentiation of cells showing dendritic pattern is related to the presence of IL-2. Moreover a synergic effect of IL-2 and GM-CSF was observed. The enzymatic features changed with the culture time: before the differentiation into DC, the stimulated cells expressed the typical pattern of monocytes. On the contrary, at advanced stage of differentiation, some enzyme activities changed and in terminally differentiated dendritic cells the reactions for peroxidase and serine esterase were negative.Considering the morphological features, the ability to interact with lymphocytes and the enzymatic pattern observed, we suppose that IL-2 may act as a maturative factor rather than as a growth factor in the DC differentiation
    corecore