50 research outputs found

    Low-energy Phenomenology Of Scalarless Standard-Model Extensions With High-Energy Lorentz Violation

    Full text link
    We consider renormalizable Standard-Model extensions that violate Lorentz symmetry at high energies, but preserve CPT, and do not contain elementary scalar fields. A Nambu--Jona-Lasinio mechanism gives masses to fermions and gauge bosons, and generates composite Higgs fields at low energies. We study the effective potential at the leading order of the large-N_{c} expansion, prove that there exists a broken phase and study the phase space. In general, the minimum may break invariance under boosts, rotations and CPT, but we give evidence that there exists a Lorentz invariant phase. We study the spectrum of composite bosons and the low-energy theory in the Lorentz phase. Our approach predicts relations among the parameters of the low-energy theory. We find that such relations are compatible with the experimental data, within theoretical errors. We also study the mixing among generations, the emergence of the CKM matrix and neutrino oscillations.Comment: 32 pages; v2: typos corrected, more references, some more comments - PR

    Growth hormone plus resistance exercise attenuate structural changes in rat myotendinous junctions resulting from chronic unloading.

    Get PDF
    Myotendinous junctions (MTJs) are specialized sites on the muscle surface where forces generated by myofibrils are transmitted across the sarcolemma to the extracellular matrix. At the ultrastructural level, the interface between the sarcolemma and extracellular matrix is highly folded and interdigitated at these junctions. In this study, the effect of exercise and growth hormone (GH) treatments on the changes in MTJ structure that occur during muscle unloading, has been analyzed. Twenty hypophysectomized rats were assigned randomly to one of five groups: ambulatory control, hindlimb unloaded, hindlimb unloaded plus exercise (3 daily bouts of 10 climbs up a ladder with 50% body wt attached to the tail), hindlimb unloaded plus GH (2 daily injections of 1 mg/kg body wt, i.p.), and hindlimb unloaded plus exercise plus GH. MTJs of the plantaris muscle were analyzed by electron microscopy and the contact between muscle and tendon was evaluated using an IL/B ratio, where B is the base and IL is the interface length of MTJ's digit-like processes. After 10 days of unloading, the mean IL/B ratio was significantly lower in unloaded (3.92), unloaded plus exercise (4.18), and unloaded plus GH (5.25) groups than in the ambulatory control (6.39) group. On the opposite, the mean IL/B ratio in the group treated with both exercise and GH (7.3) was similar to control. These findings indicate that the interaction between exercise and GH treatments attenuates the changes in MTJ structure that result from chronic unloading and thus can be used as a countermeasure to these adaptations

    Mass Hierarchy Determination Using Neutrinos from Multiple Reactors

    Full text link
    We report the results of Monte Carlo simulations of a medium baseline reactor neutrino experiment. The difference in baselines resulting from the 1 km separations of Daya Bay and Ling Ao reactors reduces the amplitudes of 1-3 oscillations at low energies, decreasing the sensitivity to the neutrino mass hierarchy. A perpendicular detector location eliminates this effect. We simulate experiments under several mountains perpendicular to the Daya Bay/Ling Ao reactors, considering in particular the background from the TaiShan and YangJiang reactor complexes. In general the hierarchy can be determined most reliably underneath the 1000 meter mountain BaiYunZhang, which is 44.5 km from Daya Bay. If some planned reactors are not built then nearby 700 meter mountains at 47-51 km baselines gain a small advantage. Neglecting their low overhead burdens, hills near DongKeng would be the optimal locations. We use a weighted Fourier transform to avoid a spurious dependence on the high energy neutrino spectrum and find that a neural network can extract quantities which determine the hierarchy marginally better than the traditional RL + PV.Comment: 22 pages, added details on the neural network (journal version

    Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors

    Full text link
    Large mass ice/water Cherenkov experiments, optimized to detect low energy (1-20 GeV) atmospheric neutrinos, have the potential to discriminate between normal and inverted neutrino mass hierarchies. The sensitivity depends on several model and detector parameters, such as the neutrino flux profile and normalization, the Earth density profile, the oscillation parameter uncertainties, and the detector effective mass and resolution. A proper evaluation of the mass hierarchy discrimination power requires a robust statistical approach. In this work, the Toy Monte Carlo, based on an extended unbinned likelihood ratio test statistic, was used. The effect of each model and detector parameter, as well as the required detector exposure, was then studied. While uncertainties on the Earth density and atmospheric neutrino flux profiles were found to have a minor impact on the mass hierarchy discrimination, the flux normalization, as well as some of the oscillation parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP}) uncertainties and correlations resulted critical. Finally, the minimum required detector exposure, the optimization of the low energy threshold, and the detector resolutions were also investigated.Comment: 23 pages, 16 figure

    Model-Independent νˉe\bar\nu_{e} Short-Baseline Oscillations from Reactor Spectral Ratios

    Get PDF
    We consider the ratio of the spectra measured in the DANSS neutrino experiment at 12.7 and 10.7~m from a nuclear reactor. These data give a new model-independent indication in favor of short-baseline νˉe\bar\nu_{e} oscillations which reinforce the model-independent indication found in the late 2016 in the NEOS experiment. The combined analysis of the NEOS and DANSS spectral ratios in the framework of 3+1 active-sterile neutrino mixing favor short-baseline νˉe\bar\nu_{e} oscillations with a statistical significance of 3.7σ3.7\sigma. The two mixing parameters sin22ϑee\sin^{2}2\vartheta_{ee} and Δm412\Delta{m}^{2}_{41} are constrained at 2σ2\sigma in a narrow-Δm412\Delta{m}^{2}_{41} island at Δm4121.3eV2\Delta{m}^2_{41} \simeq 1.3 \, \text{eV}^2, with sin22ϑee=0.049±0.023 \sin^{2}2\vartheta_{ee} = 0.049 \pm 0.023 (2σ2\sigma). We discuss the implications of the model-independent NEOS+DANSS analysis for the reactor and Gallium anomalies. The NEOS+DANSS model-independent determination of short-baseline νˉe\bar\nu_{e} oscillations allows us to analyze the reactor rates without assumptions on the values of the main reactor antineutrino fluxes and the data of the Gallium source experiments with free detector efficiencies. The corrections to the reactor neutrino fluxes and the Gallium detector efficiencies are obtained from the fit of the data. In particular, we confirm the indication in favor of the need for a recalculation of the 235U^{235}\text{U} reactor antineutrino flux found in previous studies assuming the absence of neutrino oscillations.Comment: 10 pages; analysis improved by taking into account the uncertainties of the reactor fission fraction
    corecore