24 research outputs found

    Evolution of malaria mortality and morbidity after the emergence of chloroquine resistance in Niakhar, Senegal

    Get PDF
    Background: Recently, it has been assumed that resistance of Plasmodium to chloroquine increased malaria mortality. The study aimed to assess the impact of chemoresistance on mortality attributable to malaria in a rural area of Senegal, since the emergence of resistance in 1992, whilst chloroquine was used as first-line treatment of malaria, until the change in national anti-malarial policy in 2003. Methods: The retrospective study took place in the demographic surveillance site (DSS) of Niakhar. Data about malaria morbidity were obtained from health records of three health care facilities, where diagnosis of malaria was based on clinical signs. Source of data concerning malaria mortality were verbal autopsies performed by trained fieldworkers and examined by physicians who identified the probable cause of death. Results: From 1992 to 2004, clinical malaria morbidity represented 39% of total morbidity in health centres. Mean malaria mortality was 2.4 parts per thousand and 10.4 parts per thousand among total population and children younger than five years, respectively, and was highest in the 1992-1995 period. It tended to decline from 1992 to 2003 (Trend test, total population p = 0.03, children 0-4 years p = 0.12 - children 1-4 years p = 0.04 - children 5-9 years p = 0.01). Conclusion: Contrary to what has been observed until 1995, mortality attributable to malaria did not continue to increase dramatically in spite of the growing resistance to chloroquine and its use as first-line treatment until 2003. Malaria morbidity and mortality followed parallel trends and rather fluctuated accordingly to rainfall

    L'étude de la lipoprotéine à basse densité par microscopie électronique et diffusion neutronique

    No full text
    Low-density lipoproteins (LDL) play a crucial role in the metabolism of cholesterol in the blood. Responsible for its transport from the liver to the organs, their accumulation in the arteries is the cause of cardiovascular diseases, such as atherosclerosis. Consisting of a core composed of cholesterol, in its free or esterified form, as well as triglycerides, LDL is surrounded by a membrane of phospholipids, as well as a huge protein: apolipoprotein B-100 (apo B-100). On LDL, the protein contains parts exposed on the surface, and others partially incorporated into the membrane. Apo B-100 is involved in many functionalities of LDL, such as the reception of LDL by organs, or the conversion of VLDL (very low density lipoproteins) into LDL.In this context, this thesis work focused on several fundamental questions, which are still scarcely studied: What is the structure of LDL and where is the apo B-100 protein located? What are the molecular dynamics of apo B-100?In a first part, the dynamics of apo B-100 was studied by elastic and quasi-elastic incoherent neutron scattering (EINS, QENS), techniques that allow access to time scales from picosecond to nanosecond. Due to the nature of apo B-100, and the consequences of its extraction, the measurements gave rise to new questions. Indeed, the final sample includes both apo B-100, but also the detergent used for its solubilization; Nonidet P-40 (NP40). However, incoherent scattering measurements integrate all the contributions of hydrogen atoms, both from the protein and the detergent. To separate the contributions, and to solve a problem that is not only found in the case of apo B-100, but more generally for membrane proteins, we built a new model to analyze the QENS data. From there, we highlighted the acceleration of the internal dynamics of NP40 in the presence of apo B-100, compared to measurements on pure NP40. Furthermore, we were able to quantify the molecular dynamics of apo B-100. With this methodology, we hope to pave the way for more dynamical studies with neutron scattering on systems such as membrane proteins, where the presence of detergent must be taken into account.In parallel to the dynamical investigation, we explored the structure of whole LDL by cryo-electron microscopy (cryo-EM), with these objectives in mind: to improve the quality of 3D maps of LDL in view of the recent technical developments, and to localize the apo B-100 protein on LDL’s surface. In cryo-EM, LDL images are used as a basis to reconstruct a 3D map. As the orientations of LDL are not known a priori, the 3D reconstruction relies on different algorithms, implemented in software packages, such as RELION and cryoSPARC. Their application first allowed us to quantify more precisely the esterified cholesterol layers observed in the LDL core at low temperature, and we propose a revised bilayer model. Regarding the localization of apo B-100, our map supports the current “belt” model in which apo B-100 encircles LDL. Nevertheless, the map did not provide details about the protein, such as alpha helices or beta sheets, indicating that apo B-100 should be extremely flexible on LDL, a property that was not a consensus in the LDL community until now. The presence of lipids, coupled with significant flexibility of apo B-100, makes high-resolution reconstruction of LDL and apo B-100 a real challenge, which cannot yet be solved with current tools. By making our raw data available online, and by presenting the state of our current work, we hope to initiate new discussions in cryo-EM, and the emergence of new algorithms to reconstruct such complexes.Les lipoprotĂ©ines Ă  basse densitĂ© (LDL) jouent un rĂŽle crucial dans le mĂ©tabolisme du cholestĂ©rol. Responsables de son transport du foie vers les organes, leur accumulation dans les artĂšres est Ă  l’origine de maladies cardiovasculaires, telles que l’athĂ©rosclĂ©rose. ConstituĂ©es d’un cƓur composĂ© de cholestĂ©rol, dans sa forme libre ou estĂ©rifiĂ©, ainsi que de triglycĂ©rides, les LDL sont entourĂ©es d’une membrane de phospholipides, ainsi que d’une protĂ©ine immense : l’apolipoprotĂ©ine B-100 (apo B-100). Sur la LDL, la protĂ©ine contient des parties exposĂ©es en surface, et d’autres partiellement incorporĂ©es dans la membrane. Apo B-100 est impliquĂ©e dans de nombreuses fonctionnalitĂ©s de la LDL, comme la rĂ©ception des LDL par les organes, ou la conversion des VLDL (lipoprotĂ©ines Ă  trĂšs basse densitĂ©) en LDL.Dans ce contexte, ce travail de thĂšse s’est concentrĂ© sur plusieurs questions fondamentales, qui sont encore peu Ă©tudiĂ©es : Quelle est la structure d’une LDL et oĂč se trouve la protĂ©ine apo B-100 ? Quelle est la dynamique molĂ©culaire d’apo B-100 ?Dans un premier volet, la dynamique d’apo B-100 a Ă©tĂ© Ă©tudiĂ©e par diffusion incohĂ©rente Ă©lastique et quasi-Ă©lastique de neutrons (EINS, QENS), des techniques qui permettent d’accĂ©der Ă  des Ă©chelles de temps de la picoseconde Ă  la nanoseconde. De par la nature de apo B-100, et des consĂ©quences de son extraction, les mesures ont donnĂ© lieu Ă  de nouvelles problĂ©matiques. En effet, l’échantillon final inclut Ă  la fois apo B-100, mais aussi le dĂ©tergent utilisĂ© pour sa solubilisation ; Nonidet P-40 (NP40). Hors, les mesures de diffusion incohĂ©rente intĂšgrent toutes les contributions des atomes d’hydrogĂšne, Ă  la fois la protĂ©ine ou le dĂ©tergent. Pour sĂ©parer les contributions, et apporter une solution Ă  un problĂšme qui ne se rencontre pas seulement dans le cas d’apo B-100, mais plus gĂ©nĂ©ralement avec les protĂ©ines membranaires, nous avons construit un nouveau modĂšle pour analyser les donnĂ©es QENS. Nous avons ainsi mis en Ă©vidence l’accĂ©lĂ©ration de la dynamique interne de NP40 en prĂ©sence de apo B-100, par comparaison aux mesures sur NP40 pur. En outre, nous avons pu quantifier la dynamique molĂ©culaire d’apo B-100. Avec cette mĂ©thodologie, nous espĂ©rons ouvrir la voie Ă  plus d’études dynamiques en diffusion de neutrons sur des systĂšmes comme les protĂ©ines membranaires, oĂč la prĂ©sence de dĂ©tergent doit ĂȘtre prise en compte.En parallĂšle des travaux sur la dynamique, nous avons explorĂ© la structure des LDL entiĂšres par cryo-microscopie Ă©lectronique (cryo-EM), avec ces objectifs en tĂȘte : amĂ©liorer la qualitĂ© des cartes 3D de LDL au vu des rĂ©centes Ă©volutions techniques, et localiser la protĂ©ine apo B-100 Ă  la surface de la LDL. En cryo-EM, les images des LDL servent de base pour reconstruire une carte 3D. Comme les orientations des LDL ne sont pas connues a priori, la reconstruction 3D s’appuie sur diffĂ©rents logiciels de reconstruction, tels que RELION et cryoSPARC. Leur application a d’abord permis de quantifier plus prĂ©cisĂ©ment les couches de cholestĂ©rol estĂ©rifiĂ© observĂ©es dans le cƓur des LDL Ă  basse tempĂ©rature, et nous proposons un modĂšle rĂ©visĂ© de bicouches. Concernant la localisation de apo B-100, notre carte soutient le modĂšle actuel dans lequel apo B-100 « ceinture » la LDL. NĂ©anmoins, elle n’a pas permis d’obtenir des dĂ©tails sur la protĂ©ine, comme des hĂ©lices alpha ou feuillets bĂȘta, ce qui indique que apo B-100 serait extrĂȘmement flexible sur la LDL, une propriĂ©tĂ© qui n’était pas un consensus dans la communautĂ© des LDL jusqu’ici. La prĂ©sence de lipides, couplĂ©e Ă  une importante flexibilitĂ© de apo B-100, font de la reconstruction Ă  haute rĂ©solution de la LDL et de apo B-100 un vĂ©ritable dĂ©fi, qui ne peut pas encore ĂȘtre rĂ©solu avec les outils actuels. En mettant en ligne nos donnĂ©es brutes, et en prĂ©sentant l’état de nos travaux actuels, nous espĂ©rons amorcer de nouvelles discussions en cryo-EM, et l’émergence de nouveaux algorithmes pour reconstruire de tels complexes

    L'étude de la lipoprotéine à basse densité par microscopie électronique et diffusion neutronique

    No full text
    Low-density lipoproteins (LDL) play a crucial role in the metabolism of cholesterol in the blood. Responsible for its transport from the liver to the organs, their accumulation in the arteries is the cause of cardiovascular diseases, such as atherosclerosis. Consisting of a core composed of cholesterol, in its free or esterified form, as well as triglycerides, LDL is surrounded by a membrane of phospholipids, as well as a huge protein: apolipoprotein B-100 (apo B-100). On LDL, the protein contains parts exposed on the surface, and others partially incorporated into the membrane. Apo B-100 is involved in many functionalities of LDL, such as the reception of LDL by organs, or the conversion of VLDL (very low density lipoproteins) into LDL.In this context, this thesis work focused on several fundamental questions, which are still scarcely studied: What is the structure of LDL and where is the apo B-100 protein located? What are the molecular dynamics of apo B-100?In a first part, the dynamics of apo B-100 was studied by elastic and quasi-elastic incoherent neutron scattering (EINS, QENS), techniques that allow access to time scales from picosecond to nanosecond. Due to the nature of apo B-100, and the consequences of its extraction, the measurements gave rise to new questions. Indeed, the final sample includes both apo B-100, but also the detergent used for its solubilization; Nonidet P-40 (NP40). However, incoherent scattering measurements integrate all the contributions of hydrogen atoms, both from the protein and the detergent. To separate the contributions, and to solve a problem that is not only found in the case of apo B-100, but more generally for membrane proteins, we built a new model to analyze the QENS data. From there, we highlighted the acceleration of the internal dynamics of NP40 in the presence of apo B-100, compared to measurements on pure NP40. Furthermore, we were able to quantify the molecular dynamics of apo B-100. With this methodology, we hope to pave the way for more dynamical studies with neutron scattering on systems such as membrane proteins, where the presence of detergent must be taken into account.In parallel to the dynamical investigation, we explored the structure of whole LDL by cryo-electron microscopy (cryo-EM), with these objectives in mind: to improve the quality of 3D maps of LDL in view of the recent technical developments, and to localize the apo B-100 protein on LDL’s surface. In cryo-EM, LDL images are used as a basis to reconstruct a 3D map. As the orientations of LDL are not known a priori, the 3D reconstruction relies on different algorithms, implemented in software packages, such as RELION and cryoSPARC. Their application first allowed us to quantify more precisely the esterified cholesterol layers observed in the LDL core at low temperature, and we propose a revised bilayer model. Regarding the localization of apo B-100, our map supports the current “belt” model in which apo B-100 encircles LDL. Nevertheless, the map did not provide details about the protein, such as alpha helices or beta sheets, indicating that apo B-100 should be extremely flexible on LDL, a property that was not a consensus in the LDL community until now. The presence of lipids, coupled with significant flexibility of apo B-100, makes high-resolution reconstruction of LDL and apo B-100 a real challenge, which cannot yet be solved with current tools. By making our raw data available online, and by presenting the state of our current work, we hope to initiate new discussions in cryo-EM, and the emergence of new algorithms to reconstruct such complexes.Les lipoprotĂ©ines Ă  basse densitĂ© (LDL) jouent un rĂŽle crucial dans le mĂ©tabolisme du cholestĂ©rol. Responsables de son transport du foie vers les organes, leur accumulation dans les artĂšres est Ă  l’origine de maladies cardiovasculaires, telles que l’athĂ©rosclĂ©rose. ConstituĂ©es d’un cƓur composĂ© de cholestĂ©rol, dans sa forme libre ou estĂ©rifiĂ©, ainsi que de triglycĂ©rides, les LDL sont entourĂ©es d’une membrane de phospholipides, ainsi que d’une protĂ©ine immense : l’apolipoprotĂ©ine B-100 (apo B-100). Sur la LDL, la protĂ©ine contient des parties exposĂ©es en surface, et d’autres partiellement incorporĂ©es dans la membrane. Apo B-100 est impliquĂ©e dans de nombreuses fonctionnalitĂ©s de la LDL, comme la rĂ©ception des LDL par les organes, ou la conversion des VLDL (lipoprotĂ©ines Ă  trĂšs basse densitĂ©) en LDL.Dans ce contexte, ce travail de thĂšse s’est concentrĂ© sur plusieurs questions fondamentales, qui sont encore peu Ă©tudiĂ©es : Quelle est la structure d’une LDL et oĂč se trouve la protĂ©ine apo B-100 ? Quelle est la dynamique molĂ©culaire d’apo B-100 ?Dans un premier volet, la dynamique d’apo B-100 a Ă©tĂ© Ă©tudiĂ©e par diffusion incohĂ©rente Ă©lastique et quasi-Ă©lastique de neutrons (EINS, QENS), des techniques qui permettent d’accĂ©der Ă  des Ă©chelles de temps de la picoseconde Ă  la nanoseconde. De par la nature de apo B-100, et des consĂ©quences de son extraction, les mesures ont donnĂ© lieu Ă  de nouvelles problĂ©matiques. En effet, l’échantillon final inclut Ă  la fois apo B-100, mais aussi le dĂ©tergent utilisĂ© pour sa solubilisation ; Nonidet P-40 (NP40). Hors, les mesures de diffusion incohĂ©rente intĂšgrent toutes les contributions des atomes d’hydrogĂšne, Ă  la fois la protĂ©ine ou le dĂ©tergent. Pour sĂ©parer les contributions, et apporter une solution Ă  un problĂšme qui ne se rencontre pas seulement dans le cas d’apo B-100, mais plus gĂ©nĂ©ralement avec les protĂ©ines membranaires, nous avons construit un nouveau modĂšle pour analyser les donnĂ©es QENS. Nous avons ainsi mis en Ă©vidence l’accĂ©lĂ©ration de la dynamique interne de NP40 en prĂ©sence de apo B-100, par comparaison aux mesures sur NP40 pur. En outre, nous avons pu quantifier la dynamique molĂ©culaire d’apo B-100. Avec cette mĂ©thodologie, nous espĂ©rons ouvrir la voie Ă  plus d’études dynamiques en diffusion de neutrons sur des systĂšmes comme les protĂ©ines membranaires, oĂč la prĂ©sence de dĂ©tergent doit ĂȘtre prise en compte.En parallĂšle des travaux sur la dynamique, nous avons explorĂ© la structure des LDL entiĂšres par cryo-microscopie Ă©lectronique (cryo-EM), avec ces objectifs en tĂȘte : amĂ©liorer la qualitĂ© des cartes 3D de LDL au vu des rĂ©centes Ă©volutions techniques, et localiser la protĂ©ine apo B-100 Ă  la surface de la LDL. En cryo-EM, les images des LDL servent de base pour reconstruire une carte 3D. Comme les orientations des LDL ne sont pas connues a priori, la reconstruction 3D s’appuie sur diffĂ©rents logiciels de reconstruction, tels que RELION et cryoSPARC. Leur application a d’abord permis de quantifier plus prĂ©cisĂ©ment les couches de cholestĂ©rol estĂ©rifiĂ© observĂ©es dans le cƓur des LDL Ă  basse tempĂ©rature, et nous proposons un modĂšle rĂ©visĂ© de bicouches. Concernant la localisation de apo B-100, notre carte soutient le modĂšle actuel dans lequel apo B-100 « ceinture » la LDL. NĂ©anmoins, elle n’a pas permis d’obtenir des dĂ©tails sur la protĂ©ine, comme des hĂ©lices alpha ou feuillets bĂȘta, ce qui indique que apo B-100 serait extrĂȘmement flexible sur la LDL, une propriĂ©tĂ© qui n’était pas un consensus dans la communautĂ© des LDL jusqu’ici. La prĂ©sence de lipides, couplĂ©e Ă  une importante flexibilitĂ© de apo B-100, font de la reconstruction Ă  haute rĂ©solution de la LDL et de apo B-100 un vĂ©ritable dĂ©fi, qui ne peut pas encore ĂȘtre rĂ©solu avec les outils actuels. En mettant en ligne nos donnĂ©es brutes, et en prĂ©sentant l’état de nos travaux actuels, nous espĂ©rons amorcer de nouvelles discussions en cryo-EM, et l’émergence de nouveaux algorithmes pour reconstruire de tels complexes

    Studies of low-density lipoproteins by cryo-electron microscopy and neutron scattering

    No full text
    Les lipoprotĂ©ines Ă  basse densitĂ© (LDL) jouent un rĂŽle crucial dans le mĂ©tabolisme du cholestĂ©rol. Responsables de son transport du foie vers les organes, leur accumulation dans les artĂšres est Ă  l’origine de maladies cardiovasculaires, telles que l’athĂ©rosclĂ©rose. ConstituĂ©es d’un cƓur composĂ© de cholestĂ©rol, dans sa forme libre ou estĂ©rifiĂ©, ainsi que de triglycĂ©rides, les LDL sont entourĂ©es d’une membrane de phospholipides, ainsi que d’une protĂ©ine immense : l’apolipoprotĂ©ine B-100 (apo B-100). Sur la LDL, la protĂ©ine contient des parties exposĂ©es en surface, et d’autres partiellement incorporĂ©es dans la membrane. Apo B-100 est impliquĂ©e dans de nombreuses fonctionnalitĂ©s de la LDL, comme la rĂ©ception des LDL par les organes, ou la conversion des VLDL (lipoprotĂ©ines Ă  trĂšs basse densitĂ©) en LDL.Dans ce contexte, ce travail de thĂšse s’est concentrĂ© sur plusieurs questions fondamentales, qui sont encore peu Ă©tudiĂ©es : Quelle est la structure d’une LDL et oĂč se trouve la protĂ©ine apo B-100 ? Quelle est la dynamique molĂ©culaire d’apo B-100 ?Dans un premier volet, la dynamique d’apo B-100 a Ă©tĂ© Ă©tudiĂ©e par diffusion incohĂ©rente Ă©lastique et quasi-Ă©lastique de neutrons (EINS, QENS), des techniques qui permettent d’accĂ©der Ă  des Ă©chelles de temps de la picoseconde Ă  la nanoseconde. De par la nature de apo B-100, et des consĂ©quences de son extraction, les mesures ont donnĂ© lieu Ă  de nouvelles problĂ©matiques. En effet, l’échantillon final inclut Ă  la fois apo B-100, mais aussi le dĂ©tergent utilisĂ© pour sa solubilisation ; Nonidet P-40 (NP40). Hors, les mesures de diffusion incohĂ©rente intĂšgrent toutes les contributions des atomes d’hydrogĂšne, Ă  la fois la protĂ©ine ou le dĂ©tergent. Pour sĂ©parer les contributions, et apporter une solution Ă  un problĂšme qui ne se rencontre pas seulement dans le cas d’apo B-100, mais plus gĂ©nĂ©ralement avec les protĂ©ines membranaires, nous avons construit un nouveau modĂšle pour analyser les donnĂ©es QENS. Nous avons ainsi mis en Ă©vidence l’accĂ©lĂ©ration de la dynamique interne de NP40 en prĂ©sence de apo B-100, par comparaison aux mesures sur NP40 pur. En outre, nous avons pu quantifier la dynamique molĂ©culaire d’apo B-100. Avec cette mĂ©thodologie, nous espĂ©rons ouvrir la voie Ă  plus d’études dynamiques en diffusion de neutrons sur des systĂšmes comme les protĂ©ines membranaires, oĂč la prĂ©sence de dĂ©tergent doit ĂȘtre prise en compte.En parallĂšle des travaux sur la dynamique, nous avons explorĂ© la structure des LDL entiĂšres par cryo-microscopie Ă©lectronique (cryo-EM), avec ces objectifs en tĂȘte : amĂ©liorer la qualitĂ© des cartes 3D de LDL au vu des rĂ©centes Ă©volutions techniques, et localiser la protĂ©ine apo B-100 Ă  la surface de la LDL. En cryo-EM, les images des LDL servent de base pour reconstruire une carte 3D. Comme les orientations des LDL ne sont pas connues a priori, la reconstruction 3D s’appuie sur diffĂ©rents logiciels de reconstruction, tels que RELION et cryoSPARC. Leur application a d’abord permis de quantifier plus prĂ©cisĂ©ment les couches de cholestĂ©rol estĂ©rifiĂ© observĂ©es dans le cƓur des LDL Ă  basse tempĂ©rature, et nous proposons un modĂšle rĂ©visĂ© de bicouches. Concernant la localisation de apo B-100, notre carte soutient le modĂšle actuel dans lequel apo B-100 « ceinture » la LDL. NĂ©anmoins, elle n’a pas permis d’obtenir des dĂ©tails sur la protĂ©ine, comme des hĂ©lices alpha ou feuillets bĂȘta, ce qui indique que apo B-100 serait extrĂȘmement flexible sur la LDL, une propriĂ©tĂ© qui n’était pas un consensus dans la communautĂ© des LDL jusqu’ici. La prĂ©sence de lipides, couplĂ©e Ă  une importante flexibilitĂ© de apo B-100, font de la reconstruction Ă  haute rĂ©solution de la LDL et de apo B-100 un vĂ©ritable dĂ©fi, qui ne peut pas encore ĂȘtre rĂ©solu avec les outils actuels. En mettant en ligne nos donnĂ©es brutes, et en prĂ©sentant l’état de nos travaux actuels, nous espĂ©rons amorcer de nouvelles discussions en cryo-EM, et l’émergence de nouveaux algorithmes pour reconstruire de tels complexes.Low-density lipoproteins (LDL) play a crucial role in the metabolism of cholesterol in the blood. Responsible for its transport from the liver to the organs, their accumulation in the arteries is the cause of cardiovascular diseases, such as atherosclerosis. Consisting of a core composed of cholesterol, in its free or esterified form, as well as triglycerides, LDL is surrounded by a membrane of phospholipids, as well as a huge protein: apolipoprotein B-100 (apo B-100). On LDL, the protein contains parts exposed on the surface, and others partially incorporated into the membrane. Apo B-100 is involved in many functionalities of LDL, such as the reception of LDL by organs, or the conversion of VLDL (very low density lipoproteins) into LDL.In this context, this thesis work focused on several fundamental questions, which are still scarcely studied: What is the structure of LDL and where is the apo B-100 protein located? What are the molecular dynamics of apo B-100?In a first part, the dynamics of apo B-100 was studied by elastic and quasi-elastic incoherent neutron scattering (EINS, QENS), techniques that allow access to time scales from picosecond to nanosecond. Due to the nature of apo B-100, and the consequences of its extraction, the measurements gave rise to new questions. Indeed, the final sample includes both apo B-100, but also the detergent used for its solubilization; Nonidet P-40 (NP40). However, incoherent scattering measurements integrate all the contributions of hydrogen atoms, both from the protein and the detergent. To separate the contributions, and to solve a problem that is not only found in the case of apo B-100, but more generally for membrane proteins, we built a new model to analyze the QENS data. From there, we highlighted the acceleration of the internal dynamics of NP40 in the presence of apo B-100, compared to measurements on pure NP40. Furthermore, we were able to quantify the molecular dynamics of apo B-100. With this methodology, we hope to pave the way for more dynamical studies with neutron scattering on systems such as membrane proteins, where the presence of detergent must be taken into account.In parallel to the dynamical investigation, we explored the structure of whole LDL by cryo-electron microscopy (cryo-EM), with these objectives in mind: to improve the quality of 3D maps of LDL in view of the recent technical developments, and to localize the apo B-100 protein on LDL’s surface. In cryo-EM, LDL images are used as a basis to reconstruct a 3D map. As the orientations of LDL are not known a priori, the 3D reconstruction relies on different algorithms, implemented in software packages, such as RELION and cryoSPARC. Their application first allowed us to quantify more precisely the esterified cholesterol layers observed in the LDL core at low temperature, and we propose a revised bilayer model. Regarding the localization of apo B-100, our map supports the current “belt” model in which apo B-100 encircles LDL. Nevertheless, the map did not provide details about the protein, such as alpha helices or beta sheets, indicating that apo B-100 should be extremely flexible on LDL, a property that was not a consensus in the LDL community until now. The presence of lipids, coupled with significant flexibility of apo B-100, makes high-resolution reconstruction of LDL and apo B-100 a real challenge, which cannot yet be solved with current tools. By making our raw data available online, and by presenting the state of our current work, we hope to initiate new discussions in cryo-EM, and the emergence of new algorithms to reconstruct such complexes

    PyDSC: a simple tool to treat differential scanning calorimetry data

    No full text
    International audienceAbstract Herein, we describe an open-source, Python-based, script to treat the output of differential scanning calorimetry (DSC) experiments, called pyDSC , available free of charge for download at https://github.com/leonardo-chiappisi/pyDSC under a GNU General Public License v3.0. The main aim of this program is to provide the community with a simple program to analyze raw DSC data. Key features include the correction from spurious signals, and, most importantly, the baseline is computed with a robust, physically consistent approach. We also show that the baseline correction routine implemented in the script is significantly more reproducible than different standard ones proposed by proprietary instrument control software provided with the microcalorimeter used in this work. Finally, the program can be easily applied to large amount of data, improving the reliability and reproducibility of DSC experiments

    PyDSC: a simple tool to treat differential scanning calorimetry data

    No full text
    Herein, we describe an open-source, Python-based, script to treat the output of differential scanning calorimetry (DSC) experiments, called pyDSC , available free of charge for download at https://github.com/leonardo-chiappisi/pyDSC under a GNU General Public License v3.0. The main aim of this program is to provide the community with a simple program to analyze raw DSC data. Key features include the correction from spurious signals, and, most importantly, the baseline is computed with a robust, physically consistent approach. We also show that the baseline correction routine implemented in the script is significantly more reproducible than different standard ones proposed by proprietary instrument control software provided with the microcalorimeter used in this work. Finally, the program can be easily applied to large amount of data, improving the reliability and reproducibility of DSC experiments.TU Berlin, Open-Access-Mittel – 202

    The dynamical Matryoshka model: 1. Incoherent neutron scattering functions for lipid dynamics in bilayers.

    No full text
    Fluid lipid bilayers are the building blocks of biological membranes. Although there is a large amount of experimental data using incoherent quasi-elastic neutron scattering (QENS) techniques to study membranes, very little theoretical works have been developed to study the local dynamics of membranes. The main objective of this work is to build a theoretical framework to study and describe the local dynamics of lipids and derive analytical expressions of intermediate scattering functions (ISF) for QENS. As results, we developed the dynamical Matryoshka model which describes the local dynamics of lipid molecules in membrane layers as a nested hierarchical convolution of three motional processes: (i) individual motions described by the vibrational motions of H-atoms; (ii) internal motions including movements of the lipid backbone, head groups and tails, and (iii) molecule movements of the lipid molecule as a whole. The analytical expressions of the ISF associated with these movements are all derived. For use in analyzing the QENS experimental data, we also derived an analytical expression for the aggregate ISF of the Matryoshka model which involves an elastic term plus three inelastic terms of well-separated time scales and whose amplitudes and rates are functions of the lipid motions. And as an illustrative application, we used the aggregated ISF to analyze the experimental QENS data on a lipid sample of multilamellar bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine). It is clear from this analysis that the dynamical Matryoshka model describes very well the experimental data and allow extracting the dynamical parameters of the studied system

    Probing local lipid dynamics at the picosecond timescale with the Bicout mode

    No full text
    Lipid membranes are at the basis of cell organization. Understanding their functionality, in the light of their structure and dynamics is then crucial. Using quasi-elastic neutron scattering (QENS), it is possible to access picosecond timescale dynamics. However, since years, only few models addressed the question of local lipid dynamics, whereas the increase of the neutron flux and data quality called for novel general models. Based on a timescale separation approach from Wanderlingh et al (2014), the Bicout model re-introduces the main local motions presented in the 80s by Pfeiffer et al, but writes them all in a unique framework that requires few hypotheses. Among others are described motions of the whole lipid, like its rotation, diffusion within the membrane, or in- out-of-the-plane dynamics. In addition, it makes a distinction between the head and the tail dynamics. Here, we would like to present a quantitative and complete study of local lipid dynamics on standard DMPC membranes. We probed the effects of known features such as the main phase transition, membrane geometry, or direction of motions, and proved the application of this new model.13th European Biophysics Congres

    Investigation of the Action of Peptides on Lipid Membranes

    No full text
    International audienc
    corecore