4 research outputs found

    Validity of bioelectrical impedance analysis to estimation fat-free mass in the army cadets

    No full text
    Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. Methods: A total of 396 males, Brazilian Army cadets, aged 17–24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student’s t-test (for paired sample), linear regression analysis, and Bland–Altman method were used to test the validity of the BIA equations. Results: Predictive BIA equations showed significant differences in FFM compared to DXA (p < 0.05) and large limits of agreement by Bland–Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Conclusion: Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM.83COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP23001.000422/98-302011/23460-

    Validity of Bioelectrical Impedance Analysis to Estimation Fat-Free Mass in the Army Cadets

    No full text
    Background: Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. Methods: A total of 396 males, Brazilian Army cadets, aged 17–24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student’s t-test (for paired sample), linear regression analysis, and Bland–Altman method were used to test the validity of the BIA equations. Results: Predictive BIA equations showed significant differences in FFM compared to DXA (p &lt; 0.05) and large limits of agreement by Bland–Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Conclusion: Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM

    Physical training over 6 months is associated with improved changes in phase angle, body composition, and blood glucose in healthy young males

    No full text
    The aim of this study was to evaluate the association between phase angle, body composition, and blood glucose changes in healthy young males after 6 months of physical training. Methods Volunteers, 98 healthy males (18.8 +/- 0.5 years), had 6 months of progressive physical training (5 days a week, 90 minutes a day). Resistance, reactance, and phase angle were obtained by bioelectrical impedance analysis, body composition (fat mass, bone mineral content [BMC], and lean soft tissue [LST]) by dual-energy X-ray absorptiometry, and blood glucose by reflectance photometry. Measurements were made at rest and in a fasted state, both before and after the training period. Results Phase angle, reactance, BMC, and LST significantly increased (0.6 degrees, 3.8 omega, 0.1 kg, and 1.9 kg, respectively; P < .01), whereas resistance and blood glucose decreased (-11.2 omega and -4.1 mg/dL; P < .01). Changes in resistance and reactance explained those changes observed in LST (R-2 = .26 and .16, respectively), but phase angle changes were not related to body composition and blood glucose alterations (P < .05). Conclusions A 6-month period of physical training was associated with positive changes in phase angle, body composition, and blood glucose in healthy young males, reinforcing the importance of maintaining a physically active lifestyle.315CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível Superior23001.000422/98-3

    Effect of Physical Training on Body Composition in Brazilian Military

    Get PDF
    The military are selected on the basis of physical standards and are regularly involved in strong physical activities, also related to particular sports training. The aims of the study were to analyze the effect of a 7-month military training program on body composition variables and the suitability of specific &lsquo;bioelectrical impedance vector analysis&rsquo; (spBIVA), compared to DXA, to detect the changes in body composition. A sample of 270 male Brazilian cadets (19.1 &plusmn; 1.1 years), composed of a group practicing military physical training routine only (MT = 155) and a group involved in a specific sport training (SMT = 115), were measured by body composition assessments (evaluated by means of DXA and spBIVA) at the beginning and the end of the military routine year. The effect of training on body composition was similar in SMT and MT groups, with an increase in LST. DXA and spBIVA were correlated, with specific resistance (Rsp) and reactance (Xcsp) positively related to fat mass (FM), FM%, LST, and lean soft tissue index (LSTI), and phase angle positively related to LST and LSTI. Body composition variations due to physical training were recognized by spBIVA: the increase in muscle mass was indicated by the phase angle and Xcsp increase, and the stability of FM% was consistent with the unchanged values of Rsp. Military training produced an increase in muscle mass, but no change in FM%, independently of the sample characteristics at baseline and the practice of additional sports. SpBIVA is a suitable technique for the assessment of body composition in military people
    corecore