3 research outputs found
Grau en Informaci贸 i Documentaci贸
El t铆tol de grau en Informaci贸 i Documentaci贸 pertany a la branca de Ci猫ncies Socials i Jur铆diques, s"imparteix a la Facultat de Geografi a i Hist貌ria i t茅 una aportaci贸 docent provinent, principalment, de tres departaments: Hist貌ria de la Ci猫ncia i Documentaci贸, Hist貌ria de l"Antiguitat i de la Cultura Escrita, i Inform脿tica. Aquestes tres vessants donen al t铆tol un car脿cter multidisciplinari
Definici贸n de Algoritmos de Caracterizaci贸n y Emparejamiento de Huellas Magn茅ticas para la Re-Identificaci贸n de Veh铆culos en Entornos Interurbanos basados en Sensores Magneto-Resistivos
La gesti贸n del tr谩fico es una tarea que requiere disponer de la m谩xima informaci贸n sobre el estado de las v铆as de circulaci贸n y sobre los veh铆culos que las utilizan. Esta informaci贸n se obtiene a trav茅s del procesamiento de los datos que ofrecen un gran conjunto de sensores distribuidos sobre la infraestructura y los veh铆culos que se desea monitorizar. En este contexto, los datos m谩s apreciados son los que permiten conocer los itinerarios individuales de cada veh铆culo, y son muy pocos los tipos de sensores que pueden ofrecerlos a trav茅s de un proceso de re-identificaci贸n de veh铆culos en distintos puntos de la red viaria.
Los sensores magn茅ticos se han aplicado a la detecci贸n del tr谩fico desde los a帽os 1960. La evoluci贸n tecnol贸gica de los 煤ltimos a帽os ha permitido la aparici贸n de un nuevo tipo de sensores que pueden obtener informaci贸n muy detallada de los veh铆culos en movimiento: los sensores magneto-resistivos. Estos sensores son capaces de obtener una caracterizaci贸n propia de cada veh铆culo a trav茅s de una huella magn茅tica, que no es m谩s que una representaci贸n de la interferencia que genera un veh铆culo en movimiento sobre el Campo Magn茅tico de la Tierra.
Las huellas magn茅ticas obtenidas de los sensores magneto-resistivos se han utilizado recientemente con fines de clasificaci贸n y re-identificaci贸n de veh铆culos. Los estudios cient铆ficos que han fundamentado estas aplicaciones constatan la dificultad de obtener con precisi贸n la informaci贸n relevante para estos fines. Los principales problemas con los que se han enfrentado los investigadores han sido la obtenci贸n de huellas magn茅ticas de todos los veh铆culos (detecci贸n), la extracci贸n de la informaci贸n relevante de cada huella magn茅tica (segmentaci贸n de la se帽al), la selecci贸n de los datos de los sensores adecuados para cada una de las aplicaciones (procesamiento de la se帽al), la utilizaci贸n de un m茅todo 贸ptimo de comparaci贸n de veh铆culos a trav茅s de sus huellas (medida de similitud), la definici贸n de una arquitectura de sensorizaci贸n adecuada para la adquisici贸n de los datos relevantes de los veh铆culos (red de sensores) y la consideraci贸n del modelo magn茅tico del veh铆culo en los procedimientos de re-identificaci贸n (caracterizaci贸n magn茅tica del veh铆culo).
Esta tesis profundiza en estos problemas y propone nuevas soluciones para mejorar los ratios de re-identificaci贸n de veh铆culos en el caso de las v铆as interurbanas, donde las velocidades elevadas y las trayectorias de los veh铆culos representan una dificultad a帽adida con respecto al caso de las v铆as urbanas en las que se desarrollan la mayor parte de estudios de la literatura.
En primer lugar se aborda el estudio de las se帽ales que proporcionan los sensores magneto-resistivos y la eficacia de las medidas de similitud que han sido utilizadas por otros investigadores con fines de re-identificaci贸n. Como resultado de este estudio se propone un nuevo m茅todo de extracci贸n y comparaci贸n de se帽ales con una parametrizaci贸n adecuada de los procedimientos de tratamiento de se帽ales y una selecci贸n adecuada y justificada de la medida de similitud. Tambi茅n se propone una t茅cnica de alineaci贸n de se帽ales que permite obtener valores de similitud m谩s altos y mejora la eficacia de la re-identificaci贸n.
Posteriormente se analiza el modelo magn茅tico de un veh铆culo seg煤n los datos que perciben los sensores magneto-resistivos. Este an谩lisis pone de manifiesto la complejidad de la estructura de los veh铆culos y permite determinar y cuantificar las zonas que son m谩s adecuadas para la extracci贸n de huellas magn茅ticas que vayan a ser utilizadas con fines de re-identificaci贸n.
Finalmente, se realiza un experimento en un entorno real (autopista M-12) donde se despliega una nueva configuraci贸n de sensores para la re-identificaci贸n y se aplican todos los algoritmos y procedimientos de tratamiento y comparaci贸n de se帽ales resultantes de las tareas previas. Con ello se constata la mejora que supone la metodolog铆a propuesta en esta tesis sobre los trabajos previos de otros investigadores en t茅rminos de ratios de re-identificaci贸n correctos.Traffic Management is a task that needs as much information as possible about the roads status and about the vehicles that are circulating on them. This information is usually obtained by processing the data that can be extracted from a large set of sensors located around the roads and from the circulating vehicles. In this context, the most appreciated data is that about the individual paths of each and every vehicle. However, few are the types of sensors that can provide the traffic managers with this kind of data by means of a re-identification process at different points of the road network.
Magnetic sensors have been applied to traffic detection since the 1960鈥檚. The evolution of the technology in the most recent years has brought a new type of sensors that can extract very detailed information from the moving vehicles: the magneto-resistive sensors. These sensors can obtain a particular characterization of every vehicle through a magnetic fingerprint. The magnetic fingerprint is just the representation of the interference that a moving vehicle causes to the Earth magnetic field.
Magnetic fingerprints from magneto-resistive sensors have been recently used for vehicle classification and re-identification purposes. The work of scientists in this field shows the difficulties of getting accurate data for these objectives. The major problems that have been found are the acquisition of magnetic fingerprints for all vehicles (detection), the extraction of relevant information from the magnetic time series (signal segmentation), the selection of the appropriate data of each signal for a particular problem (signal processing), the use of an optimal method to compare vehicles through their magnetic fingerprints (similarity measure), the definition of a sensors architecture to gather the relevant information from the vehicles (sensor network) and the consideration of a magnetic model for the vehicles during the re-identification process (magnetic characterization of the vehicles).
This thesis deals with the above mentioned problems and proposes new solutions to improve the vehicles re-identification ratios for inter-urban roads. In this environment, the high vehicles speeds and varying trajectories increase the problem complexity in contrast to the urban roads, where almost all the previous studies have been carried out.
Firstly, a study of the signals produced by the magneto-resistive sensors will be made, together with an analysis of the similarity measures that have been used by other researchers with re-identification purposes. The result of the study will be a new signal extraction and comparison method, the definition of a procedure for an adequate signal processing phase, and the justified definition of a similarity measure to compare vehicles. A signal alignment technique will also be proposed in order to improve the similarity values and the vehicles re-identification ratios.
Secondly, a vehicle magnetic model will be studied by using the data gathered by the magneto-resistive sensors. The complexity of the vehicles structure will be analyzed and the longitudinal vehicle section that can produce the best signals for re-identification will be bounded.
Finally, an experiment with real traffic conditions will be made (M-12 highway). A new configuration for a sensors network will be tested. The algorithms and procedures defined during the previous work and experiments will be put into practice and tested. The results of the final experiment will show the improvements that the proposed methodology has on vehicle re-identification performance, compared to previous research works
Evaluation of the use of a City Center through the use of Bluetooth Sensors Network
In order to achieve the objectives of Smart Cities, public administrations need to take measures to regulate mobility, which undoubtedly requires a high level of information and sensorization. Until the implementation of the connected vehicle takes place, it is still necessary to install sensors to obtain information about mobility. Bluetooth sensors are becoming a useful tool due to the low cost of equipment and installation. The use of Bluetooth sensors in cities, with short distances between sensors, makes it necessary to propose new classification algorithms that allow the trips of pedestrians and vehicles to be differentiated. This article presents the study carried out in the city of Valencia to determine the use of motor vehicles in the historic center and propose a new classification algorithm to distinguish between an onboard Bluetooth device and the same device carried by a pedestrian when it is not possible to use the travel time for the classification due to the short distance between sensors. This causes very similar or even indistinguishable travel times for vehicles and for pedestrians. We also propose an algorithm that allows vehicles to be classified according to what type of trip is made always through the historical center of Valencia, whether it is to make a shorter itinerary through the city or to access the center for any type of business. This algorithm would enable the Origin-Destination matrix of an urban network with short distances between sensors if they are available in all entries and exits. Likewise, the results obtained have allowed to positively evaluate the algorithm defined to distinguish between trips made by a pedestrian or a vehicle in a city, using the MAC address of their mobile devices with very short distances among sensors. The results of this study show that it is possible to use Bluetooth technology, with low cost installations, to evaluate the use of the city by motor vehicles