2,519 research outputs found

    Sum of exit times in series of metastable states in probabilistic cellular automata

    Get PDF
    Reversible Probabilistic Cellular Automata are a special class of automata whose stationary behavior is described by Gibbs--like measures. For those models the dynamics can be trapped for a very long time in states which are very different from the ones typical of stationarity. This phenomenon can be recasted in the framework of metastability theory which is typical of Statistical Mechanics. In this paper we consider a model presenting two not degenerate in energy metastable states which form a series, in the sense that, when the dynamics is started at one of them, before reaching stationarity, the system must necessarily visit the second one. We discuss a rule for combining the exit times from each of the metastable states

    Metastability in the two-dimensional Ising model with free boundary conditions

    Full text link
    We investigate metastability in the two dimensional Ising model in a square with free boundary conditions at low temperatures. Starting with all spins down in a small positive magnetic field, we show that the exit from this metastable phase occurs via the nucleation of a critical droplet in one of the four corners of the system. We compute the lifetime of the metastable phase analytically in the limit T→0T\to 0, h→0h\to 0 and via Monte Carlo simulations at fixed values of TT and hh and find good agreement. This system models the effects of boundary domains in magnetic storage systems exiting from a metastable phase when a small external field is applied.Comment: 24 pages, TeX fil

    Proposed CTV design reference missions in support of Space Station Freedom

    Get PDF
    Use of design reference missions (DRM's) for the cargo transfer vehicle (CTV) in support of Space Station Freedom (SSF) can provide a common baseline for the design and assessment of CTV systems and mission operations. These DRM's may also provide baseline operations scenarios for integrated CTV, Shuttle, and SSF operations. Proposed DRM's for CTV, SSF, and Shuttle operations envisioned during the early post-PMC time frame and continuing through mature, SSF evolutionary operations are described. These proposed DRM's are outlines for detailed mission definition; by treating these DRM's as top-level input for mission design studies, a range of parametric studies for systems/operations may be performed. Shuttle flight design experience, particularly rendezvous flight design, provides an excellent basis for DRM operations studies. To begin analysis of the DRM's, shuttle trajectory design tools were used in single case analysis to define CTV performance requirements. A summary of these results is presented

    A Comparison Between Different Cycle Decompositions for Metropolis Dynamics

    Get PDF
    In the last decades the problem of metastability has been attacked on rigorous grounds via many different approaches and techniques which are briefly reviewed in this paper. It is then useful to understand connections between different point of views. In view of this we consider irreducible, aperiodic and reversible Markov chains with exponentially small transition probabilities in the framework of Metropolis dynamics. We compare two different cycle decompositions and prove their equivalence

    Relaxation Height in Energy Landscapes: an Application to Multiple Metastable States

    Get PDF
    The study of systems with multiple (not necessarily degenerate) metastable states presents subtle difficulties from the mathematical point of view related to the variational problem that has to be solved in these cases. We introduce the notion of relaxation height in a general energy landscape and we prove sufficient conditions which are valid even in presence of multiple metastable states. We show how these results can be used to approach the problem of multiple metastable states via the use of the modern theories of metastability. We finally apply these general results to the Blume--Capel model for a particular choice of the parameters ensuring the existence of two multiple, and not degenerate in energy, metastable states

    Competitive nucleation in reversible Probabilistic Cellular Automata

    Get PDF
    The problem of competitive nucleation in the framework of Probabilistic Cellular Automata is studied from the dynamical point of view. The dependence of the metastability scenario on the self--interaction is discussed. An intermediate metastable phase, made of two flip--flopping chessboard configurations, shows up depending on the ratio between the magnetic field and the self--interaction. A behavior similar to the one of the stochastic Blume--Capel model with Glauber dynamics is found

    A classical statistical model for distributions of escape events in swept-bias Josephson junctions

    Full text link
    We have developed a model for experiments in which the bias current applied to a Josephson junction is slowly increased from zero until the junction switches from its superconducting zero-voltage state, and the bias value at which this occurs is recorded. Repetition of such measurements yields experimentally determined probability distributions for the bias current at the moment of escape. Our model provides an explanation for available data on the temperature dependence of these escape peaks. When applied microwaves are included we observe an additional peak in the escape distributions and demonstrate that this peak matches experimental observations. The results suggest that experimentally observed switching distributions, with and without applied microwaves, can be understood within classical mechanics and may not exhibit phenomena that demand an exclusively quantum mechanical interpretation.Comment: Eight pages, eight figure

    Colorado Visual and Performing Arts Education Survey Statistical Report: A Comprehensive Survey of Arts Education in the Colorado Schools

    Get PDF
    Approximately 25% of Colorado Public Schools provided a detailed description of the size and scope of their formal and informal (extra-curricular) arts education programs via a voluntary survey in January of 2008. Sixty-six percent of the school districts had at least one school participate in the study. The objective of the study was to quantify the level, type and scope of arts education offered and delivered to Colorado public school students

    Liver Sinusoid on a Chip: Long-Term Layered Co-Culture of Primary Rat Hepatocytes and Endothelial Cells in Microfluidic Platforms

    Full text link
    We describe the generation of microfluidic platforms for the co-culture of primary hepatocytes and endothelial cells; these platforms mimic the architecture of a liver sinusoid. This paper describes a progressional study of creating such a liver sinusoid on a chip system. Primary rat hepatocytes (PRHs) were co-cultured with primary or established endothelial cells in layers in single and dual microchannel configurations with or without continuous perfusion. Cell viability and maintenance of hepatocyte functions were monitored and compared for diverse experimental conditions. When primary rat hepatocytes were co-cultured with immortalized bovine aortic endothelial cells (BAECs) in a dual microchannel with continuous perfusion, hepatocytes maintained their normal morphology and continued to produce urea for at least 30 days. In order to demonstrate the utility of our microfluidic liver sinusoid platform, we also performed an analysis of viral replication for the hepatotropic hepatitis B virus (HBV). HBV replication, as measured by the presence of cell-secreted HBV DNA, was successfully detected. We believe that our liver model closely mimics the in vivo liver sinusoid and supports long-term primary liver cell culture. This liver model could be extended to diverse liver biology studies and liver-related disease research such as drug induced liver toxicology, cancer research, and analysis of pathological effects and replication strategies of various hepatotropic infectious agents

    Monte Carlo study of gating and selection in potassium channels

    Full text link
    The study of selection and gating in potassium channels is a very important issue in modern biology. Indeed such structures are known in all types of cells in all organisms where they play many important functional roles. The mechanism of gating and selection of ionic species is not clearly understood. In this paper we study a model in which gating is obtained via an affinity-switching selectivity filter. We discuss the dependence of selectivity and efficiency on the cytosolic ionic concentration and on the typical pore open state duration. We demonstrate that a simple modification of the way in which the selectivity filter is modeled yields larger channel efficiency
    • …
    corecore