35 research outputs found

    Una herramienta eficaz en el estudio de la Botánica: la citometría de flujo

    Get PDF
    Over the last decade there has been a tremendous increase in the use of flow cytometry (FCM) in studies on the biosystematics, ecology and population biology of vascular plants. Most studies, address questions related to spatial distribution and evolutionary significance of genome duplication (polyploidy), chromosomal variation (aneuploidy) and variation in genome size. The unsurpassed speed and reliability of estimating differences in nuclear DNA content by FCM paves the way for large-scale surveys at the landscape, population, individual and tissue levels. Another attractive feature of FCM is the possibility of reformulating former taxonomic concepts to propose robust classifications based on a detailed understanding of population structure and phenotypic variation of plant groups under investigation. In this review, special attention is paid to FCM as applied to Botany studies, and some new and less wellknown uses of it for plants will be discussed. It is likely that in the future the use of FCM in studies on taxonomy, ecology and population biology of plants will increase both in scope and frequency. Flow cytometry alone, but especially in combination with other molecular and phenotypic approaches, promises advances in our understanding of the functional significance of variation in genome size in plants

    An effective tool in the study of botany: flow cytometry

    No full text
    Over the last decade there has been a tremendous increase in the use of flow cytometry (FCM) in studies on the biosystematics, ecology and population biology of vascular plants. Most studies, address questions related to spatial distribution and evolutionary significance of genome duplication (polyploidy), chromosomal variation (aneuploidy) and variation in genome size. The unsurpassed speed and reliability of estimating differences in nuclear DNA content by FCM paves the way for large-scale surveys at the landscape, population, individual and tissue levels. Another attractive feature of FCM is the possibility of reformulating former taxonomic concepts to propose robust classifications based on a detailed understanding of population structure and phenotypic variation of plant groups under investigation. In this review, special attention is paid to FCM as applied to Botany studies, and some new and less wellknown uses of it for plants will be discussed. It is likely that in the future the use of FCM in studies on taxonomy, ecology and population biology of plants will increase both in scope and frequency. Flow cytometry alone, but especially in combination with other molecular and phenotypic approaches, promises advances in our understanding of the functional significance of variation in genome size in plants

    Phylogenetic relationships of Petrocoptis A. Braun ex Endl. (Caryophyllaceae), a discussed genus from the Iberian Peninsula

    No full text
    Petrocoptis is a small genus of chasmophytic plants endemic to the Iberian Peninsula, with some localized populations in the French Pyrenees. Within the genus, a dozen species have been recognized based on morphological diversity, most of them with limited distribution area, in small populations and frequently with potential threats to their survival. To date, however, a molecular evaluation of the current systematic treatments has not been carried out. The aim of the present study is to infer phylogenetic relationships among its subordinate taxa by using plastidial rps16 intron and nuclear internal transcribed spacer (ITS) DNA sequences; and evaluate the phylogenetic placement of the genus Petrocoptis within the family Caryophyllaceae. The monophyly of Petrocoptis is supported by both ITS and rps16 intron sequence analyses. Furthermore, time estimates using BEAST analyses indicate a Middle to Late Miocene diversification (10.59 Myr, 6.44–15.26 Myr highest posterior densities [HPD], for ITS; 14.30 Myr, 8.61–21.00 Myr HPD, for rps16 intron)
    corecore