12 research outputs found

    Interventional Ultrasound in Dermatology: A Pictorial Overview Focusing on Cutaneous Melanoma Patients

    Get PDF
    Cutaneous melanoma incidence is increasing worldwide, representing an aggressive tumor when evolving to the metastatic phase. High-resolution ultrasound (US) is playing a growing role in the assessment of newly diagnosed melanoma cases, in the locoregional staging prior to the sentinel lymph-node biopsy procedure, and in the melanoma patient follow-up. Additionally, US may guide a number of percutaneous procedures in the melanoma patients, encompassing diagnostic and therapeutic modalities. These include fine needle cytology, core biopsy, placement of presurgical guidewires, aspiration of lymphoceles and seromas, and electrochemotherapy

    Enhanced GRK2 expression and desensitization of betaAR vasodilatation in hypertensive patients.

    Get PDF
    Increased levels of G protein coupled receptor kinase GRK2 appear to participate in hypertension presumably through the desensitization of beta adrenergic receptors (betaARs) that mediate vasodilatation. There are contrasting data on the occurrence of betaAR desensitization in the vasculature, we therefore investigated betaAR vasodilatation and desensitization in normotensives and in hypertensive humans. In blood lymphocytes, we assessed betaAR signaling and GRK2 expression and found betaAR signaling alterations and, consistent with desensitization, ncreased GRK2 levels in hypertensives. We studied in vivo vasodilatation to the betaAR agonist isoproterenol (ISO) injected in the brachia artery in control conditions and during the concomitant infusion of heparin, a known in vitro nonspecific GRK inhibitor. ISO induced a dose-dependent vasorelaxation that was attenuated in hypertensives indicating a loss of betaAR signaling. Intra-arterial infusion of heparin nhibited lymphocyte GRK2 activity and prevented desensitization of betaAR vasodilatation in normotensives. In hypertensives, heparin restored vasodilatation to ISO, to levels observed in normotensives. Our results suggest that betaAR desensitization does indeed occur at the vascular levels in vivo, and that heparin by acting as a GRK inhibitor prevents this in normotensives and restores impaired betaAR vasodilation in hypertensives. We conclude that desensitization participates to impaired betaAR vasodilation in hypertension

    AKT participates in endothelial dysfunction in hypertension.

    Get PDF
    In hypertension, reduced nitric oxide production and blunted endothelial vasorelaxation are observed. It was recently reported that AKT phosphorylates and activates endothelial nitric oxide synthase and that impaired kinase activity may be involved in endothelial dysfunction.To identify the physiological role of the kinase in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), we used adenoviral vectors to transfer the human AKT1 gene selectively to the common carotid endothelium. In vitro, endothelial vasorelaxations to acetylcholine, isoproterenol, and insulin were blunted in control carotids from SHR compared with WKY rats, and human AKT1 overexpression corrected these responses. Similarly, blood flow assessed in vivo by Doppler ultrasound was reduced in SHR compared with WKY carotids and normalized after AKT1 gene transfer. In primary cultured endothelial cells, we evaluated AKT phosphorylation, activity, and compartmentalization and observed a mislocalization of the kinase in SHR.We conclude that AKT participates in the settings of endothelial dysfunction in SHR rats by impaired membrane localization. Our data suggest that AKT is involved in endothelium dysfunction in hypertension

    The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance.

    No full text
    Insulin (Ins) resistance (IRES) associates to increased cardiovascular risk as observed in metabolic syndrome. Chronic stimulation of beta-adrenergic receptors (betaAR) due to exaggerated sympathetic nervous system activity is involved in the pathogenesis of IRES. The cellular levels of G protein coupled receptor kinase 2 (GRK2) increase during chronic betaAR stimulation, leading to betaAR desensitization. We tested the hypothesis that GRK2 plays a role in betaAR-induced IRES.We evaluated Ins-induced glucose uptake and signalling responses in vitro in cell overexpressing the beta(2)AR, the GRK2, or the catalytically dead mutant GRK2-DN. In a model of increased adrenergic activity, IRES and elevated cellular GRK2 levels, the spontaneously hypertensive rats (SHR) we performed the intravenous glucose tolerance test load. To inhibit GRK2, we synthesized a peptide based on the catalytical sequence of GRK2 conjugated with the antennapedia internalization sequence (Ant-124). Ins in human kidney embryonic (HEK-293) cells causes rapid accumulation of GRK2, tyrosine phosphorylation of Ins receptor substrate 1 (IRS1) and induces glucose uptake. In the same cell type, transgenic beta(2)AR overexpression causes GRK2 accumulation associated with significant deficit of IRS1 activation and glucose uptake by Ins. Similarly, transgenic GRK2 overexpression prevents Ins-induced tyrosine phosphorylation of IRS1 and glucose uptake, whereas GRK2-DN ameliorates glucose extraction. By immunoprecipitation, GRK2 binds IRS1 but not the Ins receptor in an Ins-dependent fashion, which is lost in HEK-GRK2 cells. Ant-124 improves Ins-induced glucose uptake in HEK-293 and HEK-GRK2 cells, but does not prevent GRK2/IRS1 interaction. In SHR, Ant-124 infusion for 30 days ameliorates IRES and IRS1 tyrosine phosphorylation.Our results suggest that GRK2 mediates adrenergic IRES and that inhibition of GRK2 activity leads to increased Ins sensitivity both in cells and in animal model of IRES

    Endothelial beta2 adrenergic signaling to AKT: role of Gi and SRC.

    No full text
    We have recently demonstrated that endothelial beta(2) adrenergic receptors (beta(2)AR) regulate eNOS activity and consequently vascular tone, through means of PKB/AKT. In this work we explored the signal transduction pathway leading to AKT/eNOS activation in endothelial cells (EC). Using pharmacological and molecular inhibitors both in cultured EC cells and in ex vivo rat carotid preparations, we found that G(i) coupling of the beta(2)AR is needed for AKT activation and vasorelaxation. Since endothelial activation is sensitive to pertussis toxin but not to G(ibetagamma) inhibition by betaARKct, we conclude that G(alphai) mediates betaAR induced AKT activation. Downstream, betaAR signalling requires the soluble tyrosine kinase SRC, as both in cultured EC and rat carotid, the mutant dominant negative of SRC prevent beta(2)AR induced endothelial activation and vasodilation. In EC, G(alphai) directly interacts with SRC and this interaction leads to SRC activation and phosphorylation in a manner that is regulated by beta(2)AR stimulation. We propose a novel signal transduction pathway for beta(2)AR stimulation trough G(alphai) and SRC, leading to activation of AKT

    Ischemic neoangiogenesisenhanced by beta2-adrenergic receptor overexpression: a novel role for theendothelial adrenergic system.

    No full text
    Beta2-adrenergic receptors (beta2ARs) are widely expressed, although their physiological relevance in many tissues is not yet fully understood. In vascular endothelial cells, they regulate NO release and vessel tone. Here we provide novel evidence that beta2ARs can regulate neoangiogenesis in response to chronic ischemia. We used in vivo adenoviral-mediated gene transfer of the human beta2AR to the endothelium of the rat femoral artery and increased beta2AR signaling resulting in ameliorated angiographic blood flow and hindlimb perfusion after chronic ischemia. Histological analysis confirmed that beta2AR overexpression also produced benefits on capillary density. The same maneuver partially rescued impaired angiogenesis in spontaneously hypertensive rats (SHR), whereas gene delivery of the G-protein-coupling defective mutant Ile164 beta2AR failed to provide ameliorations. Stimulation of endogenous and overexpressed beta2AR on endothelial cells in vitro was found to regulate cell number by inducing proliferation and [3H]-thymidine incorporation through means of extracellular receptor-activated kinase and vascular endothelial growth factor. The beta2AR also has novel effects on endothelial cell number through stimulation of proapoptosis and antiapoptosis pathways involving p38 mitogen-activated protein kinase and PI3-kinase/Akt activation. Therefore, beta2ARs play a critical role in endothelial cell proliferation and function including revascularization, suggesting a novel and physiologically relevant role in neoangiogenesis in response to ischemia

    Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system.

    No full text
    Beta2-adrenergic receptors (beta2ARs) are widely expressed, although their physiological relevance in many tissues is not yet fully understood. In vascular endothelial cells, they regulate NO release and vessel tone. Here we provide novel evidence that beta2ARs can regulate neoangiogenesis in response to chronic ischemia. We used in vivo adenoviral-mediated gene transfer of the human beta2AR to the endothelium of the rat femoral artery and increased beta2AR signaling resulting in ameliorated angiographic blood flow and hindlimb perfusion after chronic ischemia. Histological analysis confirmed that beta2AR overexpression also produced benefits on capillary density. The same maneuver partially rescued impaired angiogenesis in spontaneously hypertensive rats (SHR), whereas gene delivery of the G-protein-coupling defective mutant Ile164 beta2AR failed to provide ameliorations. Stimulation of endogenous and overexpressed beta2AR on endothelial cells in vitro was found to regulate cell number by inducing proliferation and [3H]-thymidine incorporation through means of extracellular receptor-activated kinase and vascular endothelial growth factor. The beta2AR also has novel effects on endothelial cell number through stimulation of proapoptosis and antiapoptosis pathways involving p38 mitogen-activated protein kinase and PI3-kinase/Akt activation. Therefore, beta2ARs play a critical role in endothelial cell proliferation and function including revascularization, suggesting a novel and physiologically relevant role in neoangiogenesis in response to ischemia

    Accuracy of Fine Needle Cytology in Histological Prediction of Papillary Thyroid Carcinoma Variants: a Prospective Study

    No full text
    Fine needle cytology (FNC) is a crucial procedure in the preoperative diagnosis of thyroid tumors. Papillary thyroid carcinoma (PTC), in its classic variant (cPTC), is the most common malignant neoplasm of the thyroid. Several histological variants of PTC have been described, each one with its own characteristics and prognosis. The ability of FNC to identify the variants represents a challenge even for a skilled pathologist. The aim of this study was to evaluate the diagnostic cytological accuracy of FNC in PTC and to look for specific features that could predict the different variants. This was a single center prospective study on 128 patients who received a diagnosis of PTC on FNC. The smears were blindly reviewed by two cytopathologists to create a frequency score (0, 1, 2, 3) of the features for each variant. The cytological parameters were divided into three groups: architectural, nucleo-cytoplasmic, and background features. Univariate analysis was performed by chi-square test with Yates correction and Fisher exact test as appropriate. Multiple regression analysis was performed among the variables correlated at the linear correlation. The correlation study between cytology and histology showed an accuracy of FNC in classic, follicular, and oncocytic PTC variants of 63.5, 87.5, and 87% respectively. Familiarity with cytological features may allow an early diagnosis of a given PTC variant on FNC samples. This is fundamental in a preoperative evaluation for the best surgical approach and subsequent treatment
    corecore