75 research outputs found

    Thermal boundary effects on a GT liner structure

    Get PDF
    GT combustor liners are subjected to mechanical and thermal loads that damage the structure and reduce their operational life. Among those, the thermo-acoustic instabilities develop, generating pressure oscillations because of the interaction between heat release, acoustic waves and structure vibrations. The vibratory behaviour of the structure is the result of these phenomena and undergoes repeated reversals of the main deformation mechanisms as a function of the operating load of the engine. Monitoring and evaluating the operational load history and the life consumption rate of combustor components is essential to sustain a reliable risk-based maintenance in the GT combustion hardware. The non-linear material behaviour can activate possible interactions causing coupled damage mechanisms and become a life threatening mode of failure. A methodology for modelling both the dynamic and static behaviour of a GT cannular combustion chamber by utilizing a combined fluid-structure approach is presented in this study. Together with the calculation of the heat fluxes through the liner, the effects of the modifications at the thermal boundary conditions were used to investigate the modifications in the liner structural properties and the stresses development at different GT loads. The monitored pressure oscillations during operations has been investigated by performing both acoustic and structural dynamics. A correlation with the observed failure has been proposed by investigating stress relaxation phenomena’s, creep and plastic effects for base load and part load operations

    Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast

    Get PDF
    In yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR), which is mediated by Hac1p. The heat shock response (HSR) mediated by Hsf1p, mainly regulates cytosolic processes and protects the cell from stresses. Here, we find that a constitutive activation of the HSR could increase ER stress resistance in both wild-type and UPR-deficient cells. Activation of HSR decreased UPR activation in the WT (as shown by the decreased HAC1 mRNA splicing). We analyzed the genome-wide transcriptional response in order to propose regulatory mechanisms that govern the interplay between UPR and HSR and followed up for the hypotheses by experiments in vivo and in vitro. Interestingly, we found that the regulation of ER stress response via HSR is (1) only partially dependent on over-expression of Kar2p (ER resident chaperone induced by ER stress); (2) does not involve the increase in protein turnover via the proteasome activity; (3) is related to the oxidative stress response. From the transcription data, we also propose that HSR enhances ER stress resistance mainly through facilitation of protein folding and secretion. We also find that HSR coordinates multiple stress-response pathways, including the repression of the overall transcription and translation

    Production and Characterization of Peptide Antibodies to the C-Terminal of Frameshifted Calreticulin Associated with Myeloproliferative Diseases

    Full text link
    Myeloproliferative Neoplasms (MPNs) constitute a group of rare blood cancers that are characterized by mutations in bone marrow stem cells leading to the overproduction of erythrocytes, leukocytes, and thrombocytes. Mutations in calreticulin (CRT) genes may initiate MPNs, causing a novel variable polybasic stretch terminating in a common C-terminal sequence in the frameshifted CRT (CRTfs) proteins. Peptide antibodies to the mutated C-terminal are important reagents for research in the molecular mechanisms of MPNs and for the development of new diagnostic assays and therapies. In this study, eight peptide antibodies targeting the C-terminal of CRTfs were produced and characterised by modified enzyme-linked immunosorbent assays using resin-bound peptides. The antibodies reacted to two epitopes: CREACLQGWTE for SSI-HYB 385-01, 385-02, 385-03, 385-04, 385-07, 385-08, and 385-09 and CLQGWT for SSI-HYB 385-06. For the majority of antibodies, the residues Cys1, Trp9, and Glu11 were essential for reactivity. SSI-HYB 385-06, with the highest affinity, recognised recombinant CRTfs produced in yeast and the MARIMO cell line expressing CRTfs when examined in Western immunoblotting. Moreover, SSI-HYB 385-06 occasionally reacted to CRTfs from MPN patients when analysed by flow cytometry. The characterized antibodies may be used to understand the role of CRTfs in the pathogenesis of MPNs and to design and develop new diagnostic assays and therapeutic targets. Keywords: calreticulin; epitope mapping; frameshift mutations; myeloproliferative neoplasms; peptide antibodies

    Electrochemical Determination of Interaction between SARS-CoV-2 Spike Protein and Specific Antibodies

    Get PDF
    The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2

    III-Nitride Based Ultraviolet Surface Acoustic Wave Sensors

    No full text

    >

    No full text

    >

    No full text

    Deep-UV LED controlled AlGaN-based SAW oscillator

    No full text
    corecore