26 research outputs found

    Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction

    Get PDF
    PURPOSE: We aim to characterize the pathways required for autofluorescent granule (AFG) formation by RPE cells using cultured monolayers. METHODS: We fed RPE monolayers in culture with a single pulse of photoreceptor outer segments (POS). After 24 hours the cells started accumulating AFGs that were comparable to lipofuscin in vivo. Using this model, we used a variety of light and electron microscopical techniques, flow cytometry and Western blot to analyze the formation of AFGs. We also generated a mutant RPE line lacking cathepsin D by gene editing. RESULTS: AFGs seem to derive from incompletely digested POS-containing phagosomes and after 3 days are surrounded by a single membrane positive for lysosome markers. We show by various methods that lysosome-phagosome fusion is required for AFG formation, and that impairment of lysosomal pH or catalytic activity, particularly cathepsin D activity, enhances AF accumulation. CONCLUSIONS: We conclude that lysosomal dysfunction results in incomplete POS degradation and enhanced AFG accumulation

    Increased expression of EphA7 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant gliomas are lethal cancers, highly dependent on angiogenesis and treatment options and prognosis still remain poor for patients with recurrent glioblastoma multiforme (GBM). Ephs and ephrins have many well-defined functions during embryonic development of central nervous system such as axon mapping, neural crest cell migration, hindbrain segmentation and synapse formation as well as physiological and abnormal angiogenesis. Accumulating evidence indicates that Eph and ephrins are frequently overexpressed in different tumor types including GBM. However, their role in tumorigenesis remains controversial, as both tumor growth promoter and suppressor potential have been ascribed to Eph and ephrins while the function of EphA7 in GBM pathogenesis remains largely unknown.</p> <p>Methods</p> <p>In this study, we investigated the immunohistochemical expression of EphA7 in a series of 32 primary and recurrent GBM and correlated it with clinical pathological parameters and patient outcome. In addition, intratumor microvascular density (MVD) was quantified by immunostaining for endothelial cell marker von Willebrand factor (vWF).</p> <p>Results</p> <p>Overexpression of EphA7 protein was predictive of the adverse outcome in GBM patients, independent of MVD expression (p = 0.02). Moreover, high density of MVD as well as higher EphA7 expression predicted the disease outcome more accurately than EphA7 variable alone (p = 0.01). There was no correlation between MVD and overall survival or recurrence-free survival (p > 0.05). However, a statistically significant correlation between lower MVD and tumor recurrence was observed (p = 0.003).</p> <p>Conclusion</p> <p>The immunohistochemical assessment of tissue EphA7 provides important prognostic information in GBM and would justify its use as surrogate marker to screen patients for tyrosine kinase inhibitor therapy.</p

    Genomic and Epigenomic Responses to Chronic Stress Involve miRNA-Mediated Programming

    Get PDF
    Stress represents a critical influence on motor system function and has been shown to impair movement performance. We hypothesized that stress-induced motor impairments are due to brain-specific changes in miRNA and protein-encoding gene expression. Here we show a causal link between stress-induced motor impairment and associated genetic and epigenetic responses in relevant central motor areas in a rat model. Exposure to two weeks of mild restraint stress altered the expression of 39 genes and nine miRNAs in the cerebellum. In line with persistent behavioural impairments, some changes in gene and miRNA expression were resistant to recovery from stress. Interestingly, stress up-regulated the expression of Adipoq and prolactin receptor mRNAs in the cerebellum. Stress also altered the expression of Prlr, miR-186, and miR-709 in hippocampus and prefrontal cortex. In addition, our findings demonstrate that miR-186 targets the gene Eps15. Furthermore, we found an age-dependent increase in EphrinB3 and GabaA4 receptors. These data show that even mild stress results in substantial genomic and epigenomic changes involving miRNA expression and associated gene targets in the motor system. These findings suggest a central role of miRNA-regulated gene expression in the stress response and in associated neurological function

    Opposing gradients of ephrinAs and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system

    Get PDF
    SummaryDuring development of the retinocollicular projection in mouse, retinal axons initially overshoot their future termination zones (TZs) in the superior colliculus (SC). The formation of TZs is initiated by interstitial branching at topographically appropriate positions. Ephrin-As are expressed in a decreasing posterior-to-anterior gradient in the SC, and they suppress branching posterior to future TZs. Here we investigate the role of an EphA7 gradient in the SC, which has the reverse orientation to the ephrin-A gradient. We find that in EphA7 mutant mice the retinocollicular map is disrupted, with nasal and temporal axons forming additional or extended TZs, respectively. In vitro, retinal axons are repelled from growing on EphA7-containing stripes. Our data support the idea that EphA7 is involved in suppressing branching anterior to future TZs. These findings suggest that opposing ephrin-A and EphA gradients are required for the proper development of the retinocollicular projection

    Eph receptor-ligand interactions are necessary for guidance of retinal ganglion cell axons in vitro

    No full text
    Previous results of an in vitro guidance test, the stripe assay, have demonstrated the presence of a repulsive axon guidance activity for temporal retinal axons in the posterior part of the vertebrate optic tectum. Ephrin-A5 and Ephrin-A2 are ligands for the EphA subfamily of Eph receptor tyrosine kinases, which are expressed in overlapping gradients in the posterior part of the tectum. When recombinantly expressed, both proteins have been shown to guide retinal ganglion cell axons in the stripe assay. While these results suggest that Ephrin-A5 and Ephrin-A2 form part of the posterior repulsive guidance activity, they do not elucidate whether they are necessary components. Here we report that soluble forms of the ligands at nanomolar concentrations completely abolish this repulsive activity. Similar results were obtained with the soluble extracellular domain of EphA3, which is a receptor for Ephrin-A2 and Ephrin-A5, but not with the corresponding domain of EphB3, a receptor for the transmembrane class of Eph ligands. These experiments show that the repulsive axon guidance activity seen in the stripe assay is mediated by Ephrin-A ligands

    Ephrin-A5 restricts topographically specific arborization in the chick retinotectal projection in vivo

    No full text
    The retinotectal map is the best characterized model system to study how axons respond to guidance cues during the formation of the nervous system. Recent studies have shown that the critical event in forming this map is topographic-specific axon branching. To elucidate the in vivo role of the repulsive cue ephrin-A5 in this event, we used chromophore-assisted laser inactivation (CALI) to generate acute loss of ephrin-A5 function in localized areas of the posterior tectum of chick embryos in ovo and analyzed the resulting changes of retinal projections during initial outgrowth (E11) and when retinal axons arborize in the deep layers in the tectum (E12). We confirmed that ephrin-A5 functions to restrict initial axon outgrowth at E11. At E12, CALI of ephrin-A5 did not affect the extent of axon outgrowth on the tectal surface but instead caused ectopic arborization posterior to the topographically correct site in deeper layers of the tectum. This shows that ephrin-A5 restricts arborization during this critical process for developing the retinotopic map. CALI provides an approach to inactivate in vivo function in higher vertebrates with high temporal and spatial specificity that may have wide application
    corecore