1,266 research outputs found

    On the usefulness of finding charts Or the runaway carbon stars of the Blanco & McCarthy field 37

    Get PDF
    We have been recently faced with the problem of cross--identifying stars recorded in historical catalogues with those extracted from recent fully digitized surveys (such as DENIS and 2MASS). Positions mentioned in the old catalogues are frequently of poor precision, but are generally accompanied by finding charts where the interesting objects are flagged. Those finding charts are sometimes our only link with the accumulated knowledge of past literature. While checking the identification of some of these objects in several catalogues, we had the surprise to discover a number of discrepancies in recent works.The main reason for these discrepancies was generally the blind application of the smallest difference in position as the criterion to identify sources from one historical catalogue to those in more recent surveys. In this paper we give examples of such misidentifications, and show how we were able to find and correct them.We present modern procedures to discover and solve cross--identification problems, such as loading digitized images of the sky through the Aladin service at CDS, and overlaying entries from historical catalogues and modern surveys. We conclude that the use of good finding charts still remains the ultimate (though time--consuming) tool to ascertain cross--identifications in difficult cases.Comment: 4 pages, 1 figure, accepted by A&

    The AGB population of NGC 6822: distribution and the C/M ratio from JHK photometry

    Get PDF
    NGC 6822 is an irregular dwarf galaxy and part of the Local Group. Its close proximity and apparent isolation provide a unique opportunity to study galactic evolution without any obvious strong external influences. This paper aims to study the spatial distribution of the asymptotic giant branch (AGB) population and metallicity in NGC 6822. Using deep, high quality JHK photometry, taken with WFCAM on UKIRT, carbon- and oxygen-rich AGB stars have been isolated. The ratio between their number, the C/M ratio, has then been used to derive the [Fe/H] abundance across the galaxy. The tip of the red giant branch is located at K0 = 17.41 \pm 0.11 mag and the colour separation between carbon- and oxygen-rich AGB stars is at (J - K)0 = 1.20 \pm 0.03 mag (i.e. (J - K)2MAS S {\guillemotright} 1.28 mag). A C/M ratio of 0.62 \pm 0.03 has been derived in the inner 4 kpc of the galaxy, which translates into an iron abundance of [Fe/H] = -1.29\pm0.07 dex. Variations of these parameters were investigated as a function of distance from the galaxy centre and azimuthal angle. The AGB population of NGC 6822 has been detected out to a radius of 4 kpc giving a diameter of 56 arcmin. It is metal-poor, but there is no obvious gradient in metallicity with either radial distance from the centre or azimuthal angle. The detected spread in the TRGB magnitude is consistent with that of a galaxy surrounded by a halo of old stars. The C/M ratio has the potential to be a very useful tool for the determination of metallicity in resolved galaxies but a better calibration of the C/M vs. [Fe/H] relation and a better understanding of the sensitivities of the C/M ratio to stellar selection criteria is first required

    The VISTA near-infrared YJKs public survey of the Magellanic Clouds System (VMC)

    Full text link
    The VISTA public survey project VMC targets the Large Magellanic Cloud, the Small Magellanic Cloud, the Bridge and two fields in the Stream. The VMC survey is a uniform and homogeneous survey in the Y, J and Ks near-infrared filters. The main goals are the determination of the star formation history and the three-dimensional structure of the Magellanic system. The survey is therefore designed to reach stars as faint as the oldest main sequence turn-off point and to constrain the mean magnitude of pulsating variable stars such as RR Lyrae and Cepheids. We provide a brief overview of the survey strategy and first science results. Further details are given in Cioni et al. (2011)

    A Determination of the Hubble Constant from Cepheid Distances and a Model of the Local Peculiar Velocity Field

    Get PDF
    We present a measurement of the Hubble Constant based on Cepheid distances to 27 galaxies within 20 Mpc. We take the Cepheid data from published measurements by the Hubble Telescope Key Project on the Distance Scale (H0KP). We calibrate the Cepheid Period-Luminosity (PL) relation with data from over 700 Cepheids in the LMC obtained by the OGLE collaboration; we assume an LMC distance modulus of 18.50 mag (d=50.1 kpc). Using this PL calibration we obtain new distances to the H0KP galaxies. We correct the redshifts of these galaxies for peculiar velocities using two distinct velocity field models: the phenomenological model of Tonry et al. and a model based on the IRAS density field and linear gravitational instability theory. We combine the Cepheid distances with the corrected redshifts for the 27 galaxies to derive H_0, the Hubble constant. The results are H_0 = 85 +/- 5 km/s/Mpc (random error) at 95% confidence when the IRAS model is used, and 92 +/- 5 km/s/Mpc when the phenomenological model is used. The IRAS model is a better fit to the data and the Hubble constant it returns is more reliable. Systematic error stems mainly from LMC distance uncertainty which is not directly addressed by this paper. Our value of H_0 is significantly larger than that quoted by the H0KP, H_0 = 71 +/- 6 km/s/Mpc. Cepheid recalibration explains ~30% of this difference, velocity field analysis accounts for ~70%. We discuss in detail possible reasons for this discrepancy and future study needed to resolve it.Comment: 33 pages, 8 embedded figures. New table, 5 new references, text revision

    Propagation model for the Land Mobile Satellite channel in urban environments

    Get PDF
    This paper presents the major characteristics of a simulation package capable of performing a complete narrow and wideband analysis of the mobile satellite communication channel in urban environments for any given orbital configuration. The wavelength-to-average urban geometrical dimension ratio has required the use of the Geometrical Theory of Diffraction (GTD). For the RF frequency range, the model has been designed to be (1 up to 60 GHz) extended to include effects of non-perfect conductivity and surface roughness. Taking advantage of the inherent capabilities of such a high frequency method, we are able to provide a complete description of the electromagnetic field at the mobile terminal. Using the information made available at the ray-tracer and GTD solver outputs, the Land Mobile Satellite (LMS) urban model can also give a detailed description of the communication channel in terms of power delay profiles, Doppler spectra, channel scattering functions, and so forth. Statistical data, e.g. cumulative distribution functions, level crossing rates or distributions of fades are also provided. The user can access the simulation tool through a Design-CAD user-friendly interface by means of which she can effectively design her own urban layout and run consequently all the envisaged routines. The software is optimized in its execution time so that numerous runs can be achieved in a considerably short time
    • …
    corecore