17 research outputs found

    Biomedical Properties and Preparation of Iron Oxide-Dextran Nanostructures by MAPLE Technique

    Get PDF
    Background: In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz) was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results: Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p3/2 of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. Conclusions: The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications

    Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τ<sub>FWHM</sub>≅25 ns, ν = 10 Hz) was used for the growth of the hybrid, iron oxide NPs-dextran thin films.</p> <p>Results</p> <p>Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p<sub>3/2 </sub>of two thin films of dextran coated iron oxide is consistent with Fe<sup>3+ </sup>oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe<sub>2</sub>O<sub>3</sub>, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control.</p> <p>Conclusions</p> <p>The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications.</p

    A new setup for high resolution fast X-ray reflectivity data acquisition

    No full text
    A new method for fast x-ray reflectivity data acquisition is presented. The method is based on a fast rotating, slightly tilted sample reflecting to a stationary mounted position sensitive detector and it allows for measurements of reflectivity curves in a quarter of a second. The resolution in q-space mainly depends on the beam properties and the pixel size of the detector. Maximum qz_{z}-value of 1 Å1^{−1} can be achieved. The time-temperature depending structure changes of poly(NN-isopropylacrylamide) thin films were investigated in situ by applying the fast-reflectivity setup. The results are presented in this paper as illustration of the method and proof of principle

    Considerations about Hypoxic Changes in Neuraxis Tissue Injuries and Recovery

    No full text
    Hypoxia represents the temporary or longer-term decrease or deprivation of oxygen in organs, tissues, and cells after oxygen supply drops or its excessive consumption. Hypoxia can be (para)-physiological&mdash;adaptive&mdash;or pathological. Thereby, the mechanisms of hypoxia have many implications, such as in adaptive processes of normal cells, but to the survival of neoplastic ones, too. Ischemia differs from hypoxia as it means a transient or permanent interruption or reduction of the blood supply in a given region or tissue and consequently a poor provision with oxygen and energetic substratum-inflammation and oxidative stress damages generating factors. Considering the implications of hypoxia on nerve tissue cells that go through different ischemic processes, in this paper, we will detail the molecular mechanisms by which such structures feel and adapt to hypoxia. We will present the hypoxic mechanisms and changes in the CNS. Also, we aimed to evaluate acute, subacute, and chronic central nervous hypoxic-ischemic changes, hoping to understand better and systematize some neuro-muscular recovery methods necessary to regain individual independence. To establish the link between CNS hypoxia, ischemic-lesional mechanisms, and neuro-motor and related recovery, we performed a systematic literature review following the&rdquo; Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA&rdquo;) filtering method by interrogating five international medical renown databases, using, contextually, specific keywords combinations/&rdquo;syntaxes&rdquo;, with supplementation of the afferent documentation through an amount of freely discovered, also contributive, bibliographic resources. As a result, 45 papers were eligible according to the PRISMA-inspired selection approach, thus covering information on both: intimate/molecular path-physiological specific mechanisms and, respectively, consequent clinical conditions. Such a systematic process is meant to help us construct an article structure skeleton giving a primary objective input about the assembly of the literature background to be approached, summarised, and synthesized. The afferent contextual search (by keywords combination/syntaxes) we have fulfilled considerably reduced the number of obtained articles. We consider this systematic literature review is warranted as hypoxia&rsquo;s mechanisms have opened new perspectives for understanding ischemic changes in the CNS neuraxis tissue/cells, starting at the intracellular level and continuing with experimental research to recover the consequent clinical-functional deficits better

    New Advanced Imaging Parameters and Biomarkers&mdash;A Step Forward in the Diagnosis and Prognosis of TTR Cardiomyopathy

    No full text
    Transthyretin amyloid cardiomyopathy (ATTR-CM) is an infiltrative disorder characterized by extracellular myocardial deposits of amyloid fibrils, with poor outcome, leading to heart failure and death, with significant treatment expenditure. In the era of a novel therapeutic arsenal of disease-modifying agents that target a myriad of pathophysiological mechanisms, timely and accurate diagnosis of ATTR-CM is crucial. Recent advances in therapeutic strategies shown to be most beneficial in the early stages of the disease have determined a paradigm shift in the screening, diagnostic algorithm, and risk classification of patients with ATTR-CM. The aim of this review is to explore the utility of novel specific non-invasive imaging parameters and biomarkers from screening to diagnosis, prognosis, risk stratification, and monitoring of the response to therapy. We will summarize the knowledge of the most recent advances in diagnostic, prognostic, and treatment tailoring parameters for early recognition, prediction of outcome, and better selection of therapeutic candidates in ATTR-CM. Moreover, we will provide input from different potential pathways involved in the pathophysiology of ATTR-CM, on top of the amyloid deposition, such as inflammation, endothelial dysfunction, reduced nitric oxide bioavailability, oxidative stress, and myocardial fibrosis, and their diagnostic, prognostic, and therapeutic implications

    Novel Dextran Coated Cerium Doped Hydroxyapatite Thin Films

    No full text
    Dextran coated cerium doped hydroxyapatite (Ca10-xCex(PO4)6(OH)2), with x = 0.05 (5CeHAp-D) and x = 0.1 (10CeHAp-D) were deposited on Si substrates by radio frequency magnetron sputtering technique for the first time. The morphology, composition, and structure of the resulting coatings were examined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), atomic force microscopy (AFM), metallographic microscopy (MM), Fourier transform infrared spectroscopy (FTIR), and glow discharge optical emission spectroscopy (GDOES), respectively. The obtained information on the surface morphologies, composition and structure was discussed. The surface morphologies of the CeHAp-D composite thin films are smooth with no granular structures. The constituent elements of the CeHAp-D target were identified. The results of the FTIR measurements highlighted the presence of peaks related to the presence of ν1, ν3, and ν4 vibration modes of (PO43−) groups from the hydroxyapatite (HAp) structure, together with those specific to the dextran structure. The biocompatibility assessment of 5CeHAp-D and 10CeHAp-D composite coatings was also discussed. The human cells maintained their specific elongated morphology after 24 h of incubation, which confirmed that the behavior of gingival fibroblasts and their proliferative capacity were not disturbed in the presence of 5CeHAp-D and 10CeHAp-D composite coatings. The 5CeHAp-D and 10CeHAp-D coatings’ surfaces were harmless to the human gingival fibroblasts, proving good biocompatibility

    Systematic investigation and in vitro biocompatibility studies on mesoporous europium doped hydroxyapatite

    No full text
    International audienceThis paper reports a systematic investigation on europium doped hydroxyapatite (Eu:HAp). In this work, a set of complementary techniques Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and, Brunauer-Emmett-Teller (BET) technique was used to allowing a proper understanding of Eu:HAp. The XPS analysis confirmed the substitution of Ca ions by Eu ions in Eu:HAp samples. Eu:HAp and pure HAp show the isotherms of type IV with a hysteresis loop at a relative pressure (P/P0) between 0.4 and 1.0, indicating the presence of mesopores. Finally, the in vitro biological effects of Eu:HAp nanoparticles were evaluated by focusing on F-actin filaments pattern and heat shock proteins (Hsp) expression in HEK293 human kidney cells. Fluorescence microscopy studies of the actin protein revealed no changes of the immunolabeling profile in the renal cells cultured in the presence of Eu:HAp nanoparticles. Hsp60, Hsp70 and Hsp90 expression measured by Western blot analysis were not affected after a 24 and 48 hours exposure. These results confirmed the lack of nanoparticles' toxicity and the biocompatibility of Eu:HAp nanoparticles and their possibility possible uses of using them in medical purposes without affecting the renal function
    corecore