76 research outputs found

    Long-Term Soil Gas Surveys in the Northern Part of the Modena Province Pre, During and After the 2012 Seismic Sequence

    Get PDF
    Three geochemical surveys of soil gas (CO2 and CH4 flux measurements, He, H2, CO2, CH4 and C2H6 concentrations) and isotopic analyses (δ13C–CH4, δD–CH4, δ13C–CO2) were carried out as part of a feasibility study for a natural gas storage site in the Modena Province (Northern Italy), during the 2006-2009 period. In May-June 2012, a seismic sequence (main shocks of ML 5.9 and 5.8) was occurred closely to the investigated area. Chemical and isotopic analysis were repeated in May 2012, September 2012, June 2013 and July 2014.In the 2006-2009 period, at the pre-seismic conditions, chemical composition of soil gas showed that the southern part of the studied area is CH4-dominated, whereas the northern part is CO2-dominated. Relatively anomalous fluxes and concentrations were recorded with a spotted areal distribution. Anyway, CO2 and CH4 values are within the typical range of vegetative and of organic exhalation of the cultivated soil. 2012-2013 soil gas results show CO2 values essentially unvaried with respect to pre-earthquake surveys, while the 2014 values highlight an increasing of CO2 flux in the whole study area. On the contrary, CH4 values seem to be on average higher after the seismic sequence, although with a decreasing trend in the last survey (2014). Isotopic analysis were carried out only on samples with anomalous values. The δ13C-CO2 value suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived) probably related to anaerobic oxidation of heavy hydrocarbons. Methane isotopic data (δ13C-CH4) indicate a typical biogenic origin (i.e. microbial hydrocarbon production) of the CH4, as recognized elsewhere in the Po Plain and surroundings. Obtained results highlight a different CO2 and CH4 behaviour before, during and after the seismic events. These variations could be produced by increasing of bacterial (e.g. peat strata) and methanogenic fermentation processes in the first meters of the soil. No hints of deep degassing can be inferred for the study area after the earthquake, as suggested by isotopic analysis. These achieved outcomes constitute the starting point for subsequent geochemical surveys, in order to assess the temporal variations and to better understand the geochemical processes related to the seismic sequence

    Continuous/discrete geochemical monitoring of CO2 Natural Analogues and of Diffuse Degassing Structures (DDS): hints for CO2 storage sites geochemical monitoring protocol

    Get PDF
    Abstract Italy is one of the most promising prone areas to study the CO 2 behavior underground, the caprock integrity to the CO 2 leakage, mostly in presence of pervious/geochemically active faults, due to a wide availability of CO 2 rich reservoirs at a depth between 1 and 10 km, as highlighted by recent literature. These deep CO 2 reservoirs generate at least 200 leakage areas at surface throughout Italy which have been defined "Diffuse Degassing Structures" (DDS) by INGV. These are widely studied by INGV institutionally by a long term convention with the Civil Protection Department (DPC) with the aim to catalog, monitor and assess the Natural Gas Hazard (NGH, namely the probability of an area to become a site of poisonous peri-volcanic gas exhalation from soils). More than 150 researcher of INGV are involved in monitoring areas affected by the CO 2 presence underground and at surface, by continuous monitoring on-line networks (around 40 stations throughout Italy, including the Etna area, Aeolian Islands, Umbria region, Piemonte region, etc.) and discretely (9 groups of research were involved in the last years to localize, define and monitor almost all the DDSs in Italy), by sampling and analyzing chemical and isotopic compounds, useful to discriminate the origin, evolution and natural gas hazards of the examined DDS. In this paper, we will discuss some DDS catalogued and studied by a Rome INGV Research Unit (UR 11) which focused its work in Central Italy, throughout different DDS, also in relation to the diverse seismotectonic settings, to discover buried faults as possible gas leakage pathways, mostly if they are "geochemically" activated. In particular we discuss, among the discrete monitoring techniques exploited by INGV, soil gas surveying, which consists in a collection of gas samples from the soil zone not saturated (dry zone) to measure the geogas gaseous species both in fluxes (CO 2 , CH 4 , 222 Rn) and in concentration (He, H 2 , H 2 S, helium, hydrogen, CO 2 , CH 4 , 222 Rn), that permeate the soil pores. The total CO 2 flux budget was calculated as "baseline" degassing rate of these " CO 2 analogues". A good discrete areal monitoring is prerequisite to design sound continuous monitoring network to monitor CO 2 related parameters in liquid/gas phases, to review the protocol of the Annex II of the European Directivity on CCS

    Study of natural analogues for the comprehension of gas migration mechanism

    Get PDF
    Soil gas anomalies are useful to recognize influences of surface features on natural gas migration. The study of the association of different gases (with different origin and physical/chemical behavior), the collection of a large number of samples during periods of stable meteorological and soil moisture conditions (e.g., during dry season) and the use of appropriate statistical treatment of data are fundamental in the comprehension of gas migration mechanism. Gas geochemistry has been proven to be a reliable and simple technique to apply, at different scales, to many geological scenarios [Quattrocchi et al. 2001; Baubron et al. 2002; De Gregorio et al. 2002; Pizzino et al. 2002; Lewicki et al. 2003; Voltattorni et al. 2009; Lombardi and Voltattorni, 2010]. The study of spatial distribution of soil gas anomalies, at the surface, can give important and interesting information on the origin and processes involving deep and superficial gas species. This information can be applied and studied in different frameworks, for example: 1. geological sequestration of anthropogenic CO2 to reduce the amount of greenhouse gases released to the atmosphere. Natural gas emissions represent extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO2 (i.e., the return to surface potentially causing localized environmental problems). 2. radionuclide migration in the study of high-level radioactive-waste isolation systems. The main approach is to study the natural migration of radiogenic particles or elements throughout clay formations that are considered an excellent isolation and sealing material due to their ability to immobilize water and other substance over geological timescales

    New trenching results along the Ä°znik segment of the central strand of the North Anatolian Fault (Turkey): an integration with preexisting data

    Get PDF
    AbstractThis paper provides a new contribution to the construction of the complex and fragmentary mosaic of the Late Holocene earthquakes history of the İznik segment of the central strand of the North Anatolian Fault (CNAF) in Turkey. The CNAF clearly displays lower dextral slip rates with respect to the northern strand however, surface rupturing and large damaging earthquakes (M > 7) occurred in the past, leaving clear signatures in the built and natural environments. The association of these historical events to specific earthquake sources (e.g., Gemlik, İznik, or Geyve fault segments) is still a matter of debate. We excavated two trenches across the İznik fault trace near Mustafali, a village about 10 km WSW of İznik where the morphological fault scarp was visible although modified by agricultural activities. Radiocarbon and TL dating on samples collected from the trenches show that the displaced deposits are very recent and span the past 2 millennia at most. Evidence for four surface faulting events was found in the Mustafali trenches. The integration of these results with historical data and previous paleoseismological data yields an updated Late Holocene history of surface-rupturing earthquakes along the İznik Fault in 1855, 740 (715), 362, and 121 CE. Evidence for the large M7 + historical earthquake dated 1419 CE generally attributed to this fault, was not found at any trench site along the İznik fault nor in the subaqueous record. This unfit between paleoseismological, stratigraphic, and historical data highlights one more time the urge for extensive paleoseismological trenching and offshore campaigns because of the high potential to solve the uncertainties on the seismogenic history (age, earthquake location, extent of the rupture and size) of this portion of NAFZ and especially on the attribution of historical earthquakes to the causative fault

    Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery

    Get PDF
    Obesity is characterized by insulin-resistance (IR), enhanced lipolysis, and ectopic, inflamed fat. We related the histology of subcutaneous (SAT), visceral fat (VAT), and skeletal muscle to the metabolic abnormalities, and tested their mutual changes after bariatric surgery in type 2 diabetic (T2D) and weight-matched non-diabetic (ND) patients. We measured IR (insulin clamp), lipolysis ((2)H5-glycerol infusion), ß-cell glucose-sensitivity (ß-GS, mathematical modeling), and VAT, SAT, and rectus abdominis histology (light and electron microscopy). Presurgery, SAT and VAT showed signs of fibrosis/necrosis, small mitochondria, free interstitial lipids, thickened capillary basement membrane. Compared to ND, T2D had impaired ß-GS, intracapillary neutrophils and higher intramyocellular fat, adipocyte area in VAT, crown-like structures (CLS) in VAT and SAT with rare structures (cyst-like) ~10-fold larger than CLS. Fat expansion was associated with enhanced lipolysis and IR. VAT histology and intramyocellular fat were related to impaired ß-GS. Postsurgery, IR and lipolysis improved in all, ß-GS improved in T2D. Muscle fat infiltration was reduced, adipocytes were smaller and richer in mitochondria, and CLS density in SAT was reduced. In conclusion, IR improves proportionally to weight loss but remains subnormal, whilst SAT and muscle changes disappear. In T2D postsurgery, some VAT pathology persists and beta-cell dysfunction improves but is not normalized

    WAT to BAT transdifferentiation of omental fat in adult humans affected by pheochromocytomas

    Get PDF
    In small mammals and to some extent also in humans, White Adipose Tissue (WAT) and Brown Adipose Tissue (BAT) are contained together in discrete locations at subcutaneous or visceral level forming a multi-depots organ [1]. We have recently described paucilocular cells immunoreactive for uncoupling protein 1 (UCP1-ir) as morphological marker of WAT-BAT transformation in the adipose organ of cold-exposed mice (hyper-adrenergic stimulation) [2]. In this study, we examined biopsies of omental WAT depot, in 20 controls and in 12 patients affected by pheochromocytomas used as model of adrenergic stimulation in humans. Histological examination was performed by light microscopy, immunohistochemistry and Electron Microscopy. qPCR was carried out to asses relative expression of “brown” genes. Control tissues were all formed by unilocular UCP1-negative adipocytes. Half of the omental fat samples from pheochromocytomas showed UCP1-ir multilocular cells forming BAT-islands among WAT. Several UCP1-ir paucilocular cells were also detected. Higher density of TH-ir fibres and capillaries were found in the transformed tissues. Ultrastructural examination, highlighted poorly differentiated cells in pericapillary position with features similar to those identified in supraclavicular human BAT [3]. In light of the protective role exerted by BAT against the development of obesity and other metabolic diseases, WAT to BAT plasticity could be an important target for the development of therapeutic strategies in the treatment of obesity and type II diabetes in humans

    Reviewing the state of biosensors and lab-on-a- chip technologies: opportunities for extreme environments and space exploration

    Get PDF
    The space race is entering a new era of exploration, in which the number of robotic and human missions to various places in our solar system is rapidly increasing. Despite the recent advances in propulsion and life support technologies, there is a growing need to perform analytical measurements and laboratory experiments across diverse domains of science, while keeping low payload requirements. In this context, lab-on-a-chip nanobiosensors appear to be an emerging technology capable of revolutionizing space exploration, given their low footprint, high accuracy, and low payload requirements. To date, only some approaches for monitoring astronaut health in spacecraft environments have been reported. Although non-invasive molecular diagnostics, like lab-on-a-chip technology, are expected to improve the quality of long-term space missions, their application to monitor microbiological and environmental variables is rarely reported, even for analogous extreme environments on Earth. The possibility of evaluating the occurrence of unknown or unexpected species, identifying redox gradients relevant to microbial metabolism, or testing for specific possible biosignatures, will play a key role in the future of space microbiology. In this review, we will examine the current and potential roles of lab-on-a-chip technology in space exploration and in extreme environment investigation, reporting what has been tested so far, and clarifying the direction toward which the newly developed technologies of portable lab-on-a-chip sensors are heading for exploration in extreme environments and in space

    SARS-CoV-2 pre-exposure prophylaxis with tixagevimab/cilgavimab (AZD7442) provides protection in inborn errors of immunity with antibody defects: a real-world experience

    Get PDF
    Background: Preventive strategies against severe COVID-19 in Inborn Errors of Immunity (IEI) include bivalent vaccines, treatment with SARS-CoV-2 monoclonal antibodies (mAbs), early antiviral therapies, and pre-exposure prophylaxis (PrEP). Objective: To assess the effectiveness of the PrEP with tixagevimab/cilgavimab (AZD7442) in IEI with primary antibody defects during the COVID-19 Omicron wave. Methods: A six-month prospective study evaluated the SARS-CoV-2 infection rate and the COVID-19 severity in the AZD7442 group, in the no-AZD7442 group, and in a group of patients with a recent SARS-CoV-2 infection (< three months). Spike-specific IgG levels were measured at regular intervals. Results: Six out of thirty-three patients (18%) and 54/170 patients (32%) became infected in the AZD7442 group and in the no-AZD7442 group, respectively. Within 90 days post-administration, the AZD7442 group was 85% less likely to be infected and 82% less likely to have a symptomatic disease than the no-AZD7442 group. This effect was lost thereafter. In the entire cohort, no mortality/hospitalisation was observed. The control group of 35 recently infected patients was 88% and 92% less likely to be infected than the AZD7442 and no-AZD7442 groups. Serum anti-Spike IgG reached the highest peak seven days post-AZD7442 PrEP then decreased, remaining over 1000 BAU/mL 180 days thereafter. Conclusion: In patients with IEI and antibody defects, AZD7442 prophylaxis had a transient protective effect, possibly lost possibly because of the appearance of new variants. However, PrEP with newer mAbs might still represent a feasible preventive strategy in the future in this population

    Frequency-dependent tuning of the human vestibular "sixth sense" by transcranial oscillatory currents

    Get PDF
    Objective: The vestibular cortex is a multisensory associative region that, in neuroimaging investigations, is activated by slow-frequency (1-2 Hz) galvanic stimulation of peripheral receptors. We aimed to directly activate the vestibular cortex with biophysically modeled transcranial oscillatory current stimulation (tACS) in the same frequency range. Methods: Thirty healthy subjects and one rare patient with chronic bilateral vestibular deafferentation underwent, in a randomized, double-blind, controlled trial, to tACS at slow (1 or 2 Hz) or higher (10 Hz) frequency and sham stimulations, over the Parieto-Insular Vestibular Cortex (PIVC), while standing on a stabilometric platform. Subjective symptoms of motion sickness were scored by Simulator Sickness Questionnaire and subjects' postural sways were monitored on the platform. Results: tACS at 1 and 2 Hz induced symptoms of motion sickness, oscillopsia and postural instability, that were supported by posturographic sway recordings. Both 10 Hz-tACS and sham stimulation on the vestibular cortex did not affect vestibular function. As these effects persisted in a rare patient with bilateral peripheral vestibular areflexia documented by the absence of the Vestibular-Ocular Reflex, the possibility of a current spread toward peripheral afferents is unlikely. Conversely, the 10 Hz-tACS significantly reduced his chronic vestibular symptoms in this patient. Conclusions: Weak electrical oscillations in a frequency range corresponding to the physiological cortical activity of the vestibular system may generate motion sickness and postural sways, both in healthy subjects and in the case of bilateral vestibular deafferentation. Significance: This should be taken into account as a new side effect of tACS in future studies addressing cognitive functions. Higher frequencies of stimulation applied to the vestibular cortex may represent a new interventional option to reduce motion sickness in different scenarios
    • …
    corecore