8 research outputs found

    Immunization enhances the natural antibody repertoire

    Get PDF
    The role of immunization in the production of antibodies directed against immunogens is widely appreciated in laboratory animals and in humans. However, the role of immunization in the development of “natural antibodies” has not been investigated. Natural antibodies are those antibodies present without known history of infection or immunization, and react to a wide range of targets, including “cryptic” self-antigens that are exposed upon cell death. In this study, the ability of immunization to elicit the production of natural antibodies in laboratory rats was evaluated. Laboratory rats were immunized with a series of injections using peanut extracts (a common allergen), a high molecular weight protein conjugated to hapten (FITC-KLH), and a carbohydrate conjugated to hapten (DNPFicall). Significantly greater binding of antibodies from immunized animals compared to controls was observed to numerous autologous organ extracts (brain, kidney, liver, lung, prostate, and spleen) for both IgM and IgG, although the effect was more pronounced for IgM. These studies suggest that immunization may have at least one unforeseen benefit, enhancing networks of natural antibodies that may be important in such processes as wound repair and tumor surveillance. Such enhancement of natural antibody function may be particularly important in Western society, where decreased exposure to the environment may be associated with a weakened natural antibody repertoire

    Increased Biodiversity in the Environment Improves the Humoral Response of Rats

    Get PDF
    Previous studies have compared the immune systems of wild and of laboratory rodents in an effort to determine how laboratory rodents differ from their naturally occurring relatives. This comparison serves as an indicator of what sorts of changes might exist between modern humans living in Western culture compared to our hunter-gatherer ancestors. However, immunological experiments on wild-caught animals are difficult and potentially confounded by increased levels of stress in the captive animals. In this study, the humoral immune responses of laboratory rats in a traditional laboratory environment and in an environment with enriched biodiversity were examined following immunization with a panel of antigens. Biodiversity enrichment included colonization of the laboratory animals with helminths and co-housing the laboratory animals with wild-caught rats. Increased biodiversity did not apparently affect the IgE response to peanut antigens following immunization with those antigens. However, animals housed in the enriched biodiversity setting demonstrated an increased mean humoral response to T-independent and T-dependent antigens and increased levels of “natural” antibodies directed at a xenogeneic protein and at an autologous tissue extract that were not used as immunogens

    Norsk

    Get PDF
    <p>(A) Rat muscle extracts were separated by SDS PAGE and probed by immunoblotting as described in the Methods. The analysis was limited to 15 animals (n = 8 biome enriched; lanes E1 through E8, and n = 7 biome depleted; lanes D1 through D7) due to size constraints of the gel. A control strip with no serum is labeled “C”, and indicates reactivity of the anti-IgM conjugate with muscle-derived antigens. (B) The number of bands recognized by natural IgM in individual sera (p = 0.0089) and the total reactivity of natural IgM from each serum sample (p = 0.0093) are shown, with the bars indicating the mean and standard error. (C) The distribution of bands as a function of band size is shown. For this analysis, the average number of bands in biome depleted and biome enriched rats (Y-axis) was plotted on linear and log scales (main figure and figure inset, respectively) versus different band sizes (X-axis).</p

    Relative concentration of DNP-specific antibody in the serum of biome depleted (n = 20) and biome enriched (n = 15) rats.

    No full text
    <p>The relative concentration of antibody was determined by ELISA as described in the Methods. Relative levels of (A) IgM, (B) IgG, and (C) subclasses of IgG are shown. The means and standard errors are shown. The <i>p</i>-values associated with comparing data from biome depleted and biome enriched animals using a t-test are shown. (NS = not significant)</p

    Natural anti-human serum albumin antibody levels in the serum of biome depleted (n = 20) and biome enriched (n = 15) rats.

    No full text
    <p>The relative concentration of antibody was determined by ELISA as described in the Methods. Relative levels of (A) IgM and (B) IgG are shown. Binding to human serum albumin (HSA) was used as a measure of reactivity toward a xenogeneic antigen for which the animals lacked previous exposure. The means, standard errors, and the <i>p</i>-values associated with comparing data from biome depleted and biome enriched animals using a t-test are shown. (NS = not significant)</p

    Increased Biodiversity in the Environment Improves the Humoral Response of Rats

    Get PDF
    Previous studies have compared the immune systems of wild and of laboratory rodents in an effort to determine how laboratory rodents differ from their naturally occurring relatives. This comparison serves as an indicator of what sorts of changes might exist between modern humans living in Western culture compared to our hunter-gatherer ancestors. However, immunological experiments on wild-caught animals are difficult and potentially confounded by increased levels of stress in the captive animals. In this study, the humoral immune responses of laboratory rats in a traditional laboratory environment and in an environment with enriched biodiversity were examined following immunization with a panel of antigens. Biodiversity enrichment included colonization of the laboratory animals with helminths and co-housing the laboratory animals with wild-caught rats. Increased biodiversity did not apparently affect the IgE response to peanut antigens following immunization with those antigens. However, animals housed in the enriched biodiversity setting demonstrated an increased mean humoral response to T-independent and T-dependent antigens and increased levels of “natural” antibodies directed at a xenogeneic protein and at an autologous tissue extract that were not used as immunogens

    Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: correlation with cytokine production and extracellular-to-intracellular HSP70 ratio

    No full text
    corecore