21 research outputs found

    Batch and fed-batch growth of Pichia pastoris under increased air pressure

    Get PDF
    Pichia pastoris CBS 2612 behavior under air pressures of 1 bar, 3 bar and 5 bar in culture media of glycerol (pure and crude) and methanol was studied. Generally, the increase in oxygen transfer rate due to the increase of total pressure improved cellular growth for all carbon sources and for batch and fed-batch processes with different feeding rate strategies. In batch cultures, 1.4-fold, 1.2-fold, and 1.5-fold improvement in biomass production was obtained with the increase of air pressure up to 5 bar, using methanol, pure glycerol, and crude glycerol, respectively. The raise of air pressure to 5 bar using exponential feeding rate leaded to 1.4-fold improvement in biomass yield per glycerol mass consumed, for crude and pure glycerol. The current low cost of crude glycerol from the biodiesel production together with the present results shows the possibility of improving cell mass production of P. pastoris using increased air pressure.The authors acknowledge the financial support provided by "Fundacao para a Ciencia e Tecnologia" (Grant SFRH/BD/47371/2008)

    De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry

    Get PDF
    Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells

    Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    Get PDF
    Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brainScience Foundation IrelandSpanish Ministry of Science and InnovationSpanish Ministry of HealthPathfinder phase II of the Network of Centres of Excellence on NeurodegenerationEuropean Cooperation in Science and Researc

    De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry

    No full text
    Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells

    Hydrothermal structure control of polyoxofluoromolybdates(VI)

    Full text link
    The predictive hydrothermal synthesis of polyoxometalates (POMs) is an important challenge for their targeted production and for the design of new POM motifs and organic−inorganic POM materials. In this context, the systematic fluorination of POMs remains to be fully explored. Therefore, the structure-directing influence of cation pairs on the primary and secondary structure of polyoxofluoromolybdates(VI) is explored in the present study. In the first step, new types of mixed alkali difluorooctamolybdates ((M, M′)Mo8O26F2·nH2O; M, M′ = K−Cs) illustrate how the choice of the alkali cations controls the resulting structure type. This structure-directing potential of the cations is investigated in terms of electrostatic calculations. The concept of cation pairs as structural “spacers” and “scissors” is then applied to construct new secondary structures from the recently discovered [Mo6O18F6]6− and [Mo7O22F3]5− fluoromolybdate anions. The use of selected bicyclic organic cations (asn = 1-azoniaspiro[4,4]nonane; adu = 1-azonia-4,9-dioxaspiro[5,5]undecane) led to the new organic−inorganic fluoromolybdates asn2Na4Mo6O18F6·6H2O, adu3Na3Mo6O18F6·3H2O and adu4NaMo7O22F3·4H2O. The steering effect of the organic cations in the formation of the layered organic−inorganic structures is compared for all three compounds with respect to their potential as building blocks for constructing POM-based materials
    corecore