78 research outputs found

    Purification and characterization of a mycelial catalase from Scedosporium boydii, a useful tool for specific antibody detection in patients with cystic fibrosis

    Get PDF
    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a wide variety of infections in immunocompetent as well as immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF) and that may lead to allergic broncho-pulmonary mycoses, sensitization or respiratory infections. Upon microbial infection, host phagocytic cells release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by detoxification of the hydrogen peroxide. Here, we investigated the catalase equipment of S. boydii, one of the major pathogenic species in the S. apiospermum species complex. Three catalases were identified and the mycelial catalase A1 was purified to homogeneity by a three-step chromatographic process. This enzyme is a monofunctional tetrameric protein, of 460 kDa, consisting of four 82-kDa glycosylated subunits. The potential interest of this enzyme in serodiagnosis of S. apiospermum infections was then investigated by ELISA, using 64 sera from CF patients. Whatever the species involved in the S. apiospermum complex, sera from infected patients were clearly differentiated from sera from patients with an Aspergillus fumigatus infection, or from CF patients without clinical and biological signs of a fungal infection and without any fungus recovered from sputum samples. These results suggest that catalase A1 is a good candidate for the development of an immunoassay for serodiagnosis of infetions caused by the S. apiospermum complex in patients with CF

    Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients

    Get PDF
    The aims of this study were to evaluate the frequency of Achromobacter xylosoxidans infection in a cohort of cystic fibrosis patients, to investigate antimicrobial sensitivity, to establish possible clonal likeness among strains, and to address the clinical impact of this infection or colonization on the general outcome of these patients. The study was undertaken between January 2004 and December 2008 on 300 patients receiving care at the Regional Cystic Fibrosis Center of the Naples University “Federico II”. Sputum samples were checked for bacterial identification. For DNA fingerprinting, pulsed-field gel electrophoresis (PFGE) was carried out. Fifty-three patients (17.6%) had at least one positive culture for A. xylosoxidans; of these, 6/53 (11.3%) patients were defined as chronically infected and all were co-colonized by Pseudomonas aeruginosa. Of the patients, 18.8% persistently carried multidrug-resistant isolates. Macrorestriction analysis showed the presence of seven major clusters. DNA fingerprinting also showed a genetic relationship among strains isolated from the same patients at different times. The results of DNA fingerprinting indicate evidence of bacterial clonal likeness among the enrolled infected patients. We found no significant differences in the forced expiratory volume in 1 s (FEV1) and body mass index (BMI) when comparing the case group of A. xylosoxidans chronically infected patients with the control group of P. aeruginosa chronically infected patients

    Clinical effectiveness of rapid tests for methicillin resistant Staphylococcus aureus (MRSA) in hospitalized patients: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methicillin resistant <it>Staphylococcus aureus </it>(MRSA) are often resistant to multiple classes of antibiotics. The research objectives of this systematic review were to evaluate the clinical effectiveness of polymerase chain reaction (PCR) versus chromogenic agar for MRSA screening, and PCR versus no screening for several clinical outcomes, including MRSA colonization and infection rates.</p> <p>Methods</p> <p>An electronic literature search was conducted on studies evaluating polymerase chain reaction techniques and methicillin (also spelled meticillin) resistant <it>Staphylococcus aureus </it>that were published from 1993 onwards using Medline, Medline In-Process & Other Non-Indexed Citations, BIOSIS Previews, and EMBASE. Due to the presence of heterogeneity in the selected studies, the clinical findings of individual studies were described.</p> <p>Results</p> <p>Nine studies that compared screening for MRSA using PCR versus screening using chromogenic agar in a hospital setting, and two studies that compared screening using PCR with no or targeted screening were identified. Some studies found lower MRSA colonization and acquisition, infection, and transmission rates in screening with PCR versus screening with chromogenic agar, and the turnaround time for screening test results was lower for PCR. One study reported a lower number of unnecessary isolation days with screening using PCR versus screening with chromogenic agar, but the proportion of patients isolated was similar between both groups. The turnaround time for test results and number of isolation days were lower for PCR versus chromogenic agar for MRSA screening.</p> <p>Conclusions</p> <p>The use of PCR for MRSA screening demonstrated a lower turnaround time and number of isolation days compared with chromogenic agar. Given the mixed quality and number of studies (11 studies), gaps remain in the published literature and the evidence remains insufficient. In addition to screening, factors such as the number of contacts between healthcare workers and patients, number of patients attended by one healthcare worker per day, probability of colonization among healthcare workers, and MRSA status of hospital shared equipment and hospital environment must be considered to control the transmission of MRSA in a hospital setting.</p

    Joint effects of patch edges and habitat degradation on faunal predation risk in a widespread marine foundation species

    Get PDF
    Human activities degrade and fragment coastal marine habitats, reducing their structural complexity and making habitat edges a prevalent seascape feature. Though habitat edges frequently are implicated in reduced faunal survival and biodiversity, results of experiments on edge effects have been inconsistent, calling for a mechanistic approach to the study of edges that explicitly includes indirect and interactive effects of habitat alteration at multiple scales across biogeographic gradients. We used an experimental network spanning 17 eelgrass (Zostera marina) sites across the Atlantic and Pacific oceans and the Mediterranean Sea to determine (1) if eelgrass edges consistently increase faunal predation risk, (2) whether edge effects on predation risk are altered by habitat degradation (shoot thinning), and (3) whether variation in the strength of edge effects among sites can be explained by biogeographical variability in covarying eelgrass habitat features. Contrary to expectations, at most sites, predation risk for tethered crustaceans (crabs or shrimps) was lower along patch edges than in patch interiors, regardless of the extent of habitat degradation. However, the extent to which edges reduced predation risk, compared to the patch interior, was correlated with the extent to which edges supported higher eelgrass structural complexity and prey biomass compared to patch interiors. This suggests an indirect component to edge effects in which the impact of edge proximity on predation risk is mediated by the effect of edges on other key biotic factors. Our results suggest that studies on edge effects should consider structural characteristics of patch edges, which may vary geographically, and multiple ways that humans degrade habitats

    The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy

    Get PDF
    The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.Portuguese Foundation for Science and Technology (FCT), the strategic funding of UID/BIO/04469/2013-CEB and UID/EQU/00511/2013-LEPABE units. This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects “DNA mimics” PIC/IC/82815/2007, RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), “BioHealth—Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027 and NORTE-07-0124-FEDER-000025—RL2_ Environment and Health, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors also acknowledge the grant of Susana P. Lopes (SFRH/BPD/95616/2013) and of the COST-Action TD1004: Theragnostics for imaging and therapy

    Enzymatic Mechanisms Involved in Evasion of Fungi to the Oxidative Stress: Focus on Scedosporium apiospermum

    Get PDF
    The airways of patients with cystic fibrosis (CF) are frequently colonized by various filamentous fungi, mainly Aspergillus fumigatus and Scedosporium species. To establish within the respiratory tract and cause an infection, these opportunistic fungi express pathogenic factors allowing adherence to the host tissues, uptake of extracellular iron, or evasion to the host immune response. During the colonization process, inhaled conidia and the subsequent hyphae are exposed to reactive oxygen species (ROS) and reactive nitrogen species (RNS) released by phagocytic cells, which cause in the fungal cells an oxidative stress and a nitrosative stress, respectively. To cope with these constraints, fungal pathogens have developed various mechanisms that protect the fungus against ROS and RNS, including enzymatic antioxidant systems. In this review, we summarize the different works performed on ROS- and RNS-detoxifying enzymes in fungi commonly encountered in the airways of CF patients and highlight their role in pathogenesis of the airway colonization or respiratory infections. The potential of these enzymes as serodiagnostic tools is also emphasized. In addition, taking advantage of the recent availability of the whole genome sequence of S. apiospermum, we identified the various genes encoding ROS- and RNS-detoxifying enzymes, which pave the way for future investigations on the role of these enzymes in pathogenesis of these emerging species since they may constitute new therapeutics targets
    • …
    corecore