67 research outputs found

    Planetary Radio Interferometry and Doppler Experiment (PRIDE) Technique: a Test Case of the Mars Express Phobos Fly-by. 2. Doppler tracking: Formulation of observed and computed values, and noise budget

    Get PDF
    Context. Closed-loop Doppler data obtained by deep space tracking networks (e.g., NASA's DSN and ESA's Estrack) are routinely used for navigation and science applications. By "shadow tracking" the spacecraft signal, Earth-based radio telescopes involved in Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data when the dedicated deep space tracking facilities are operating in closed-loop mode only. Aims. We explain in detail the data processing pipeline, discuss the capabilities of the technique and its potential applications in planetary science. Methods. We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft, and demonstrate the quality of the results using as a test case an experiment with ESA's Mars Express spacecraft. Results. We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations are comparable to the closed-loop Doppler detections obtained with the dedicated deep space tracking facilities

    Observations of Intrahour Variable Quasars: Scattering in our Galactic Neighbourhood

    Full text link
    Interstellar scintillation (ISS) has been established as the cause of the random variations seen at centimetre wavelengths in many compact radio sources on timescales of a day or less. Observations of ISS can be used to probe structure both in the ionized insterstellar medium of the Galaxy, and in the extragalactic sources themselves, down to microarcsecond scales. A few quasars have been found to show large amplitude scintillations on unusually rapid, intrahour timescales. This has been shown to be due to weak scattering in very local Galactic ``screens'', within a few tens of parsec of the Sun. The short variability timescales allow detailed study of the scintillation properties in relatively short observing periods with compact interferometric arrays. The three best-studied ``intrahour variable'' quasars, PKS 0405-385, J1819+3845 and PKS 1257-326, have been instrumental in establishing ISS as the principal cause of intraday variability at centimetre wavelengths. Here we review the relevant results from observations of these three sources.Comment: 10 pages, 4 figures, to appear in Astronomical and Astrophysical Transaction

    Intraday variability of AGNs in the southern hemisphere

    Get PDF
    Understanding of the spectral and polarimetric characteristics of rapidly scintillating blazars is fundamental in order to describe both the innermost (sub-pc) regions of these compact objects and the interstellar medium responsible for the scintillation. A multi frequency analysis of the intraday variability in PMN J1326-5256, based on the combination of Australia Telescope Compact Array observations with the data from the monitoring projects at the University of Tasmania, will be described. Some implications concerning the structure of compact radio cores and the properties of the interstellar medium will be discussed

    Spacecraft VLBI tracking to enhance stellar occultations astrometry of planetary satellites

    Full text link
    Stellar occultations currently provide the most accurate ground-based measurements of the positions of natural satellites (down to a few kilometres for the Galilean moons). However, when using these observations in the calculation of satellite ephemerides, the uncertainty in the planetary ephemerides dominates the error budget of the occultation. We quantify the local refinement in the central planet's position achievable by performing Very Long Baseline Interferometry (VLBI) tracking of an in-system spacecraft temporally close to an occultation. We demonstrate the potential of using VLBI to enhance the science return of stellar occultations for satellite ephemerides. We identified the most promising observation and tracking opportunities offered by the Juno spacecraft around Jupiter as perfect test cases, for which we ran simulations of our VLBI experiment. VLBI tracking at Juno's perijove close to a stellar occultation locally (in time) reduces the uncertainty in Jupiter's angular position in the sky to 250-400 m. This represents up to an order of magnitude improvement with respect to current solutions and is lower than the stellar occultation error, thus allowing the moon ephemeris solution to fully benefit from the observation. Our simulations showed that the proposed tracking and observation experiment can efficiently use synergies between ground- and space-based observations to enhance the science return on both ends. The reduced error budget for stellar occultations indeed helps to improve the moons' ephemerides, which in turn benefit planetary missions and their science products, such as the recently launched JUICE and upcoming Europa Clipper missions

    Understanding Scintillation of Intraday Variables

    Full text link
    Intraday Variability of compact extragalactic radio sources can be interpreted as quenched scintillation due to turbulent density fluctuations of the nearby ionized interstellar medium. We demonstrate that the statistical analysis of IDV time series contains both information about sub-structure of the source on the scale of several 10 micro-arcsec and about the turbulent state of the ISM. The source structure and ISM properties cannot be disentangled using IDV observations alone. A comparison with the known morphology of the `local bubble' and the turbulent ISM from pulsar observations constrains possible source models. We further argue that earth orbit synthesis fails for non-stationary relativistic sources and no reliable 2D-Fourier reconstruction is possible.Comment: 4 pages, 3 figures, Proceedings of the 6th European VLBI Network Symposium, Ros E., Porcas R.W., Lobanov, A.P., & Zensus, J.A. (eds), MPIfR, Bonn, German

    Venus Express radio occultation observed by PRIDE

    Get PDF
    Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Earth. This technique is usually employed by the deep space tracking and communication facilities (e.g., NASA's Deep Space Network (DSN), ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique for radio occultation experiments, using radio telescopes equipped with Very Long Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE technique for this particular application. We explain in detail the data processing pipeline of radio occultation experiments with PRIDE, based on the collection of so-called open-loop Doppler data with VLBI stations, and perform an error propagation analysis of the technique. Results. With the VEX test case and the corresponding error analysis, we have demonstrated that the PRIDE setup and processing pipeline is suited for radio occultation experiments of planetary bodies. The noise budget of the open-loop Doppler data collected with PRIDE indicated that the uncertainties in the derived density and temperature profiles remain within the range of uncertainties reported in previous Venus' studies. Open-loop Doppler data can probe deeper layers of thick atmospheres, such as that of Venus, when compared to closed-loop Doppler data. Furthermore, PRIDE through the VLBI networks around the world, provides a wide coverage and range of large antenna dishes, that can be used for this type of experiments

    Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene

    Get PDF
    G.M.P. and E.C. contributed equally to this work. G.M.P. acknowledges the financial support from Fondazione Cariplo, grant no. 2018-0979. The authors thank the financial support from the EU Horizon 2020 Research and Innovation Programme under Grant Agreement No. 643238 (SYNCHRONICS). The authors also thank Dr. Daniele Viola for helping with the analysis of the TA data.The non‐covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo‐stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane.Fondazione Cariplo. Grant Number: 2018‐0979EU Horizon 2020 Research and Innovation Programme. Grant Number: 64323
    corecore