5 research outputs found

    Essential role of the C148–C227 disulphide bridge in the human 5-HT2A homodimeric receptor

    No full text
    The 5-HT receptor is a homodimeric G protein-coupled receptor implied in multiple diseases, including schizophrenia. Recently, its co-crystallisation with the antipsychotic drugs zotepine and risperidone has revealed the importance of its extracellular domains in its pharmacology. Previous studies have shown that the non-specific disruption of extracellular disulphide bridges in the 5-HT receptor decreases ligand binding and receptor activation. There is enough evidence to hypothesize that this decrease may be due to a reduction of the disulphide bridge that links transmembrane domain 3 (TM-3) and extracellular loop 2 (ECL-2) of the 5-HT receptor via cysteine 148 (C148) and C227. Thus, to study the influence of the C148–C227 disulphide bridge on 5-HT receptor pharmacology, we substituted C148 and C227 in the human 5-HT receptor (WT) with alanines, to obtain two single mutants (C148A and C227A) and a double mutant (C148A/C227A), and the resultant DNA constructs were used to generate four stable cell lines. These substitutions reduced the binding of the 5-HT receptor to [H]lysergic acid diethylamide ([H]LSD) and impeded the 5-HT receptor-mediated activation of phospholipase C (PLC). Furthermore, bioluminescence resonance energy transfer (BRET) and western blotting analysis revealed that these mutations did not alter the homodimeric nature of the 5-HT receptor. However, fluorescence microscopy showed that these mutations hindered receptor trafficking to the cell membrane. These results illustrate the importance of the disulphide bridge between TM-3 and ECL-2 in maintaining the correct 5-HT receptor conformation to allow ligand binding and migration of the homodimeric receptor to the cell membrane.This work was supported by the Spanish Ministry of Economy and Competitiveness (SAF2014-57138-C2-1-R and SAF2017-85225-C3-1-R) and the European Regional Development Fund (ERDF). MC and LGG were supported by a grant from the Consellería de Cultura, Educación y Ordenación Universitaria, partially co-funded by the European Social Fund (ESF) program

    Treatment and re-characterization of mouse obstructive genitourinary syndrome

    No full text
    We aimed to characterize and to explore a treatment for a condition in which male mice exhibited a solid bulge in the preputial area and an inability to breed. Twenty-seven mice from several animal housing institutions in Spain were included in this study for microbiological and pathological characterization of this condition. The condition mostly affected breeding animals and was associated with the C57BL/6J genetic background. A solid, yellowish-white substance was found inside the prepuce, which displaced the penis cranially, preventing its externalization and limiting the animal's capacity to breed. This pattern was almost identical to that of post-coital vaginal plugs, suggesting that the blocking substance originated from ejaculate. Opposite to what was suggested in previous publications, the penis was completely intact in all of the cases, with no signs of mutilation or wounds. Based on our findings, we developed a surgical technique to clear the prepuce and recover breeding performance, which we tested in 15 other mice with the condition. We eliminated the blocking substance and recurrence of the condition by surgically opening the prepuce, and most of the animals recovered fertility.Peer reviewe

    esults from a prospective observational study of men with premature ejaculation treated with dapoxetine or alternative care: the PAUSE study.

    No full text

    Hydroxo–Rhodium–N-Heterocyclic Carbene Complexes as Efficient Catalyst Precursors for Alkyne Hydrothiolation

    No full text
    corecore