10 research outputs found

    Stresses in cement mantles of hip replacements: effect of femoral implant sizes, body mass index and bone quality

    Get PDF
    The effects of femoral prosthetic heads of diameters 22 and 28 mm were investigated on the stability of reconstructed hemi-pelves with cement mantles of thicknesses 1-4 mm and different bone qualities. Materialise medical imaging package and I-Deas finite element (FE) software were used to create accurate geometry of a hemi-pelvis from CT-scan images. Our FE results show an increase in cement mantle stresses associated with the larger femoral head. When a 22 mm femoral head is used on acetabulae of diameters 56 mm and above, the probability of survivorship can be increased by creating a cement mantle of at least 1 mm thick. However, when a 28 mm femoral head is used, a cement mantle thickness of at least 4 mm is needed. Poor bone quality resulted in an average 45% increase in the tensile stresses of the cement mantles, indicating resulting poor survivorship rate

    A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction

    No full text
    Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling.publisher: Elsevier articletitle: A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction journaltitle: Journal of Biomechanics articlelink: http://dx.doi.org/10.1016/j.jbiomech.2014.12.023 content_type: article copyright: Copyright © 2014 Elsevier Ltd. All rights reserved.status: publishe

    Consumer preferences for Made in Italy food products: The role of ethnocentrism and product knowledge

    No full text
    corecore