46 research outputs found
Sub-nanosecond free carrier recombination in an indirectly excited quantum-well heterostructure
Nanometer-thick quantum-well structures are quantum model systems offering a
few discrete unoccupied energy states that can be impulsively filled and that
relax back to equilibrium predominantly via spontaneous emission of light. Here
we report on the response of an indirectly excited quantum-well
heterostructure, probed by means of time and frequency resolved
photoluminescence spectroscopy. This experiment provides access to the
sub-nanosecond evolution of the free electron density, indirectly injected in
the quantum-wells. In particular, the modelling of the time-dependent
photoluminescence spectra unveils the time evolution of the temperature and of
the chemical potentials for electrons and holes, from which the sub-nanosecond
time-dependent electron density is determined. This information allows to prove
that the recombination of excited carriers is mainly radiative and bimolecular
at early delays after excitation, while, as the carrier density decreases, a
monomolecular and non-radiative recombination channel becomes relevant. Access
to the sub-nanosecond chronology of the mechanisms responsible for the
relaxation of charge carriers provides a wealth of information for designing
novel luminescent devices with engineered spectral and temporal behavior
Pulsed homodyne Gaussian quantum tomography with low detection efficiency
Pulsed homodyne quantum tomography usually requires a high detection
efficiency limiting its applicability in quantum optics. Here, it is shown that
the presence of low detection efficiency () does not prevent the
tomographic reconstruction of quantum states of light, specifically, of
Gaussian type. This result is obtained by applying the so-called "minimax"
adaptive reconstruction of the Wigner function to pulsed homodyne detection. In
particular, we prove, by both numerical and real experiments, that an effective
discrimination of different Gaussian quantum states can be achieved. Our
finding paves the way to a more extensive use of quantum tomographic methods,
even in physical situations in which high detection efficiency is unattainable
Hubbard exciton revealed by time-domain optical spectroscopy
We use broadband ultra-fast pump-probe spectroscopy in the visible range to
study the lowest excitations across the Mott-Hubbard gap in the orbitally
ordered insulator YVO3. Separating thermal and non-thermal contributions to the
optical transients, we show that the total spectral weight of the two lowest
peaks is conserved, demonstrating that both excitations correspond to the same
multiplet. The pump-induced transfer of spectral weight between the two peaks
reveals that the low-energy one is a Hubbard exciton, i.e. a resonance or bound
state between a doublon and a holon. Finally, we speculate that the pump-driven
spin-disorder can be used to quantify the kinetic energy gain of the excitons
in the ferromagnetic phase.Comment: 5 pages and 6 figures, 9 pages and 12 figures with additional
material
Strain-induced enhancement of the charge-density-wave in the kagome metal ScVSn
The kagome geometry is an example of frustrated configuration in which rich
physics takes place, including the emergence of superconductivity and charge
density wave (CDW). Among the kagome metals, ScVSn hosts an
unconventional CDW, with its electronic order showing a different periodicity
than that of the phonon which generates it. In this material, a CDW-softened
flat phonon band has a second-order collapse at the same time that the first
order transition occurs. This phonon band originates from the out-of-plane
vibrations of the Sc and Sn atoms, and it is at the base of the
electron-phonon-coupling driven CDW phase of ScVSn. Here, we use
uniaxial strain to tune the frequency of the flat phonon band, tracking the
strain evolution via time-resolved optical spectroscopy and first-principles
calculations. Our findings emphasize the capability to induce an enhancement of
the unconventional CDW properties in ScVSn kagome metal through control
of strain.Comment: Main text + S
Ultrafast all-optical manipulation of the charge-density wave in VTe2
The charge-density-wave (CDW) phase in the layered transition-metal dichalcogenide VTe2 is strongly coupled to the band inversion involving vanadium and tellurium orbitals. In particular, this coupling leads to a selective disappearance of the Dirac-type states that characterize the normal phase, when the CDW phase sets in. Here, we investigate the broadband time-resolved reflectivity variations caused by collective and single-particle excitations in the CDW ground state of VTe2. With the aid of density functional perturbation theory simulations we unveil the presence of two collective amplitude modes of the CDW ground state. By applying a double-pulse excitation scheme, we show the possibility to manipulate these modes, gaining insights into the coupling between these two collective excitations and demonstrating a more efficient way to perturb the CDW phase in VTe2
Quasi-particles dynamics in underdoped Bi2212 under strong optical perturbation.
In this work an optical pump-probe set-up is used to study the photo-induced non-equilibrium dynamics of a superconducting underdoped Bi2212 single crystal in a strong excitation regime (10<<600 \ub5J/cm2). The use of a tunable repetition rate 120 fs pulsed laser source allows us to avoid significant average heating of the sample and to optimize the signal-to-noise ratio in the detection of the transient reflectivity variation. A discontinuity of the transient reflectivity is observed at high excitation intensities (~70 \ub5J/cm2). Numerical simulations of the heat diffusion problem indicate that, in this regime, the local temperature of the sample is lower than TC, confirming the impulsive nature of this phenomenon. The quasi-particles (QP) dynamics in the strongly perturbed superconducting state (10<<70 \ub5J/cm2) is analysed within the framework of the Rotwarf-Taylor model. The picture emerging from the data is consistent with a dynamics governed by high-frequency phonon (HFP) population, which causes a bottleneck effect in the QP recombinatio
Out-of-equilibrium charge redistribution in a copper-oxide based superconductor by time-resolved X-ray photoelectron spectroscopy
Charge-transfer excitations are of paramount importance for understanding the
electronic structure of copper-oxide based high-temperature superconductors. In
this study, we investigate the response of a
BiSrCaCuO crystal to the charge
redistribution induced by an infrared ultrashort pulse. Element-selective
time-resolved core-level photoelectron spectroscopy with a high energy
resolution allows disentangling the dynamics of oxygen ions with different
coordination and bonds thanks to their different chemical shifts. Our
experiment shows that the O\, component arising from the Cu-O planes is
significantly perturbed by the infrared light pulse. Conversely, the apical
oxygen, also coordinated with Sr ions in the Sr-O planes, remains unaffected.
This result highlights the peculiar behavior of the electronic structure of the
Cu-O planes. It also unlocks the way to study the out-of-equilibrium electronic
structure of copper-oxide-based high-temperature superconductors by identifying
the O\, core-level emission originating from the oxygen ions in the Cu-O
planes. This ability could be critical to gain information about the
strongly-correlated electron ultrafast dynamical mechanisms in the Cu-O plane
in the normal and superconducting phases
Ramifications of Optical Pumping on the Interpretation of Time-Resolved Photoemission Experiments on Graphene
In pump-probe time and angle-resolved photoemission spectroscopy (TR-ARPES)
experiments the presence of the pump pulse adds a new level of complexity to
the photoemission process in comparison to conventional ARPES. This is
evidenced by pump-induced vacuum space-charge effects and surface
photovoltages, as well as multiple pump excitations due to internal reflections
in the sample-substrate system. These processes can severely affect a correct
interpretation of the data by masking the out-of-equilibrium electron dynamics
intrinsic to the sample. In this study, we show that such effects indeed
influence TR-ARPES data of graphene on a silicon carbide (SiC) substrate. In
particular, we find a time- and laser fluence-dependent spectral shift and
broadening of the acquired spectra, and unambiguously show the presence of a
double pump excitation. The dynamics of these effects is slower than the
electron dynamics in the graphene sample, thereby permitting us to deconvolve
the signals in the time domain. Our results demonstrate that complex
pump-related processes should always be considered in the experimental setup
and data analysis.Comment: 9 pages, 4 figure
Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene
Bilayer graphene is a highly promising material for electronic and
optoelectronic applications since it is supporting massive Dirac fermions with
a tuneable band gap. However, no consistent picture of the gap's effect on the
optical and transport behavior has emerged so far, and it has been proposed
that the insulating nature of the gap could be compromised by unavoidable
structural defects, by topological in-gap states, or that the electronic
structure could be altogether changed by many-body effects. Here we directly
follow the excited carriers in bilayer graphene on a femtosecond time scale,
using ultrafast time- and angle-resolved photoemission. We find a behavior
consistent with a single-particle band gap. Compared to monolayer graphene, the
existence of this band gap leads to an increased carrier lifetime in the
minimum of the lowest conduction band. This is in sharp contrast to the second
sub-state of the conduction band, in which the excited electrons decay through
fast, phonon-assisted inter-band transitions.Comment: 5 pages, 4 figure