6 research outputs found

    Type-tuning of quasi-type-ii cdse/cds seeded core/shell nanorods: Type-i vs. type-ii

    Get PDF
    We present tuning of quasi-type-II CdSe/CdS core/shell nanorods between type-I-like and type-II-like behavior in their amplified spontaneous emission pumped by 2-photon excitation, with the type attributions verified by time-resolved emission kinetics. © OSA 2013

    Observation of biexcitons in the presence of trions generated via sequential absorption of multiple photons in colloidal quantum dot solids

    Get PDF
    Multi exciton generation (MEG) and multi exciton recombination (MER) in semiconductor quantum dots (QDs) have recently attracted significant scientific interest as a possible means to improve device efficiencies [1-5]. Convenient bandgap tunability, easy colloidal synthesis, and solution-based processability of these QDs make them further attractive for such device applications using MEG and MER. For example, recent theoretical and experimental studies have shown that MEG enables >100% peak external quantum efficiency where the generated multi excitons (MEs) are collected in a simple QD solar cell structure [1]. Furthermore, MEG has also been shown in QD photodetectors exhibiting substantially increased photocurrent levels [2]. Another promising application for MEs is the use of QDs as an alternative gain medium based on MER for lasers. Although MEG is very promising and supported with quite persuasive reports, there are still some debatable issues that need to be clarified. One of the issues that have generated great debates in the field has been the confusion of MER with the recombination of trions, which takes place in photocharged QDs. To utilize MEG and MER in practical devices such as QD solar cells and QD lasing devices, these phenomena need to be well understood. Here, we showed distinct spectrally-resolved temporal behavior of biexciton (BX), single exciton (X) and trion radiative recombinations in near unity quantum yield (QY) quasi-type II CdSe/CdS core/shell nanocrystal QDs. Upon sequential absorption of multiple photons, the extraction of Xs, BXs, and trions were achieved using time correlated single photon counting (TCSPC) measurements performed on low concentration thin film samples of these QDs at different emission wavelengths. The QDs were embedded in PMMA medium to obtain homogeneous samples and avoid Förster-type nonradiative energy transfer (NRET) between them. Here to extract Xs, BXs, and trions, we devised a new analysis approach for the time decays of the QDs that allowed us to attribute the physical events to their corresponding time decay terms, which were further verified with their excitation intensity dependencies [6]. © 2012 IEEE

    Multiexciton generation assisted highly photosensitive CdHgTe nanocrystal skins

    Get PDF
    Multiexciton Generation (MEG) enabled by the photogeneration of more than one electron-hole pairs upon the absorption of a single photon observed in colloidal semiconductor nanocrystals (NCs) is an essential key to high efficiency when operating in large enough photon energy regimes. Here, we report a newly designed class of solution-processed highly sensitive MEG-assisted photosensors of CdHgTe NCs, in which the charge accumulation is dramatically enhanced for photon energies greater than two times the bandgap of the employed NCs. We fabricated and comparatively studied five types of devices based on different NC monolayers of selected quantum-confined bandgaps resulting in different levels of photovoltage buildup readouts. Among these photosensitive platforms, MEG is distinctly observed for CdHgTe NCs, as the number of electrons trapped inside these NCs and the number of holes accumulating into the interfacing metal electrode were increased beyond a single exciton per absorbed photon. Furthermore, we conducted time-resolved fluorescence measurements and confirmed the occurrence of MEG in the CdHgTe NC monolayer of the photosensor. These findings pave the way for engineering of multiexciton kinetics in high-efficiency NC-based photosensors and photovoltaics. © 2016 Elsevier Ltd

    Silicon Mie resonators for highly directional light emission from monolayer MoS2

    No full text
    Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire

    Blue-and red-shifting amplified spontaneous emission of CdSe/CdS core/shell colloidal quantum dots

    Get PDF
    We report blue-and red-shifting amplified spontaneous emission of CdSe/CdS quantum dots, controlled by varying core/shell dimensions and modifying exciton-exciton interactions, with low optical gain threshold of two-photon absorption pumping. © OSA 2013

    Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue- to red-shifting (and non-shifting) amplified spontaneous emission

    No full text
    Tunable, high-performance, two-photon absorption (TPA)-based amplified spontaneous emission (ASE) from near-unity quantum efficiency colloidal quantum dots (CQDs) is reported. Besides the absolute spectral tuning of ASE, the relative spectral tuning of ASE peak with respect to spontaneous emission was shown through engineering excitonic interactions in quasi-type-II CdSe/CdS core/shell CQDs. With core-shell size adjustments, it was revealed that Coulombic exciton-exciton interactions can be tuned to be attractive (type-I-like) or repulsive (type-II-like) leading to red- or blue-shifted ASE peak, respectively, and that nonshifting ASE can be achieved with the right core-shell combinations. The possibility of obtaining ASE at a specific wavelength from both type-I-like and type-II-like CQDs was also demonstrated. The experimental observations were supported by parametric quantum-mechanical modeling, shedding light on the type-tunability. These excitonically engineered CQD-solids exhibited TPA-based ASE threshold as low as 6.5 mJ/cm2 under 800 nm excitation, displaying one of the highest values of TPA cross-section of 44 660 GM. © 2013 American Chemical Society
    corecore