24 research outputs found

    Healthcare-associated viral and bacterial infections in dentistry

    Get PDF
    Infection prevention in dentistry is an important topic that has gained more interest in recent years and guidelines for the prevention of cross-transmission are common practice in many countries. However, little is known about the real risks of cross-transmission, specifically in the dental healthcare setting. This paper evaluated the literature to determine the risk of cross-transmission and infection of viruses and bacteria that are of particular relevance in the dental practice environment. Facts from the literature on HSV, VZV, HIV, Hepatitis B, C and D viruses, Mycobacterium spp., Pseudomonas spp., Legionella spp. and multi-resistant bacteria are presented. There is evidence that Hepatitis B virus is a real threat for cross-infection in dentistry. Data for the transmission of, and infection with, other viruses or bacteria in dental practice are scarce. However, a number of cases are probably not acknowledged by patients, healthcare workers and authorities. Furthermore, cross-transmission in dentistry is under-reported in the literature. For the above reasons, the real risks of cross-transmission are likely to be higher. There is therefore a need for prospective longitudinal research in this area, to determine the real risks of cross-infection in dentistry. This will assist the adoption of effective hygiene procedures in dental practice

    Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas

    Get PDF
    The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.Jinghui Zhang, Gang Wu, Claudia P Miller, Ruth G Tatevossian, James D Dalton, Bo Tang, Wilda Orisme, Chandanamali Punchihewa, Matthew Parker, Ibrahim Qaddoumi, Fredrick A Boop, Charles Lu, Cyriac Kandoth, Li Ding, Ryan Lee, Robert Huether, Xiang Chen, Erin Hedlund, Panduka Nagahawatte, Michael Rusch, Kristy Boggs, Jinjun Cheng, Jared Becksfort, Jing Ma, Guangchun Song, Yongjin Li, Lei Wei, Jianmin Wang, Sheila Shurtleff, John Easton, David Zhao, Robert S Fulton, Lucinda L Fulton, David J Dooling, Bhavin Vadodaria, Heather L Mulder, Chunlao Tang, Kerri Ochoa, Charles G Mullighan, Amar Gajjar, Richard Kriwacki, Denise Sheer, Richard J Gilbertson, Elaine R Mardis, Richard K Wilson, James R Downing, Suzanne J Baker and David W Elliso
    corecore