16 research outputs found

    Time- and Dose-Dependent Effects of 17 Beta-Estradiol on Short-Term, Real-Time Proliferation and Gene Expression in Porcine Granulosa Cells

    No full text
    The key mechanisms responsible for achievement of full reproductive and developmental capability in mammals are the differentiation and transformation of granulosa cells (GCs) during folliculogenesis, oogenesis, and oocyte maturation. Although the role of 17 beta-estradiol (E2) in ovarian activity is widely known, its effect on proliferative capacity, gap junction connection (GJC) formation, and GCs-luteal cells transformation requires further research. Therefore, the goal of this study was to assess the real-time proliferative activity of porcine GCs in vitro in relation to connexin (Cx), luteinizing hormone receptor (LHR), follicle stimulating hormone receptor (FSHR), and aromatase (CYP19A1) expression during short-term (168 h) primary culture. The cultured GCs were exposed to acute (at 96 h of culture) and/or prolonged (between 0 and 168 h of culture) administration of 1.8 and 3.6 μM E2. The relative abundance of Cx36, Cx37, Cx40, Cx43, LHR, FSHR, and CYP19A1 mRNA was measured. We conclude that the proliferation capability of GCs in vitro is substantially associated with expression of Cxs, LHR, FSHR, and CYP19A1. Furthermore, the GC-luteal cell transformation in vitro may be significantly accompanied by the proliferative activity of GCs in pigs

    Influence of Estradiol-17beta on Progesterone and Estrogen Receptor mRNA Expression in Porcine Follicular Granulosa Cells during Short-Term, In Vitro Real-Time Cell Proliferation

    No full text
    Progesterone (P4) and estradiol (E2) play a significant role in mammalian reproduction. Our study demonstrated that separated porcine cumulus cells (CCs) and/or granulosa cells (GCs) might proliferate in vitro during short-term, real-time primary culture. The GCs were analyzed according to gene expression of the progesterone receptor (nuclear form) (pgr), progesterone receptor membrane component 1 (pgrmc1), and estrogen-related receptor beta 3 (esrrb3) in relation to two housekeeping genes: actb and pbgd. GCs were cultivated in medium with the E2. Both pgr/actb and pgr/pbgd revealed higher expression between 24 and 168 h of IVC of prolonged E2 treatment and at 48 h of IVC after acute E2 administration. The pgrmc1/actb and pgrmc1/pbgd displayed increased expression after prolonged E2 treatment between 24 and 120 h of IVC. The highest level of esrrb3/actb at 120 and 144 h, as well as esrrb3/pbgd at 120 h, in untreated controls as compared to the hormone-stimulated group, was observed. We suggest that E2 significantly influences the upregulation of pgr, pgrmc1, and esrrb3 expression in porcine GCs during real-time cell proliferation. Since esrrb3 expression is stimulated by E2 in both an acute and prolonged manner, estradiol may be recognized as a potential estrogen receptor agonist in GCs

    Short-term Cultivation of Porcine Cumulus Cells Influences the Cyclin-dependent Kinase 4 (Cdk4) and Connexin 43 (Cx43) Protein Expression—A Real-time Cell Proliferation Approach

    No full text
    The CC (cumulus cell) proliferation index in relation to the expression and distribution of Cdk4 and Cx43 proteins, which are crucial factors for oocyte maturation, was investigated. Cumulus-oocyte complexes (COCs) were recovered from pubertal crossbred Landrace gilts and treated with collagenase, and separated CCs were cultured in standard TCM199 medium for 44 h. At each step of in vitro cultivation (IVC) of CCs (0, 12, 24 and 44 h), a normalized proliferation index was assessed. Cdk4 and Cx43 protein expression and the CC-specific cellular distribution were analyzed by confocal microscopic observation. The normalized proliferation index (number of cells attached, measured by impedance) was increased in the first 12 h of IVC (P<0.01) and differed between 12 h and 24 h of cultivation (P<0.001). Later, between 24 h–44 h of IVC, the CC proliferation rate was stable, and no significant differences were observed. Based on the confocal microscopic observation, increased expression of both Cdk4 and Cx43 was found after 44 h of IVC compared with the expression of these proteins before IVC. Moreover, after IVC, a substantial translocation of Cdk4 and Cx43 was noted from the nucleus to the cytoplasm of CCs. In conclusion, it was demonstrated for the first time that CCs can be cultured in vitro separately without oocytes and that the proliferation index was significantly increased in the first 12 h of IVC, which may reflect the process of ordinary cumulus cell expansion. Furthermore, the expression of both Cdk4 and Cx43 in CCs suggested that these proteins may be regarded as markers not only of proper oocyte maturation but also of CC differentiation. Translocation of these proteins into the cytoplasm of CCs after 44 h of IVC may be related to the expansion process

    Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM – a microarray approach

    No full text
    Abstract Background The full maturational capability of mammalian oocytes is accompanied by nuclear and cytoplasmic modifications, which are associated with proliferation and differentiation of surrounding cumulus cells. These events are regulated on molecular level by the expression of target genes involved in signal transduction pathways crucial for folliculogenesis and oogenesis. Transforming growth factor beta signaling includes several molecules that are involved in the regulation of oogenesis and embryo growth, including bone morphogenetic protein (BMP). However, the BMP-related gene expression profile in oocytes at different maturational stages requires further investigation. Methods Oocytes were isolated from pubertal crossbred Landrace gilts follicles, selected with a use of BCB staining test and analyzed before and after in vitro maturation. Gene expression profiles were examined using an Affymetrix microarray approach and validated by RT-qPCR. Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was used for the extraction of the genes belonging to a BMP-signaling pathway ontology group. Results The assay revealed 12,258 different transcripts in porcine oocytes, among which 379 genes were down-regulated and 40 were up-regulated. The DAVID database indicated a “BMP signaling pathway” ontology group, which was significantly regulated in both groups of oocytes. We discovered five up-regulated genes in oocytes before versus after in vitro maturation (IVM): chordin-like 1 (CHRDL1), follistatin (FST), transforming growth factor-beta receptor-type III (TGFβR3), decapentaplegic homolog 4 (SMAD4), and inhibitor of DNA binding 1 (ID1). Conclusions Increased expression of CHRDL1, FST, TGFβR3, SMAD4, and ID1 transcripts before IVM suggested a subordinate role of the BMP signaling pathway in porcine oocyte maturational competence. Conversely, it is postulated that these genes are involved in early stages of folliculogenesis and oogenesis regulation in pigs, since in oocytes before IVM increased expression was observed

    Expression of INHβA and INHβB proteins in porcine oocytes cultured in vitro is dependent on the follicle size

    No full text
    The current study aimed to investigate differential expression of inhibin βA (INHβA) and inhibin βB (INHβB) in porcine oocytes before or after in vitro maturation (IVM) isolated from follicles of various sizes. Porcine oocytes isolated from large, medium and small follicles (40 from each) were used to study the INHβA and INHβB protein expression pattern using western blot analysis before or after 44 h of oocyte IVM. An increased expression of INHβA was found in oocytes collected from large and medium follicles compared with small follicles before or after IVM (P < 0.001, P < 0.05, respectively). Similarly, higher INHβB levels were observed in oocytes recovered from large follicles compared with small (P < 0.01). As INHβA and INHβB are expressed in both porcine follicular somatic cells and oocytes, it can be assumed that these transforming growth factor beta (TGFβ) superfamily factors are involved in the regulation of molecular bi-directional pathways during follicle and oocyte development, and can be recognized as markers of follicle and oocyte maturation. Moreover, the current study clearly demonstrated that inhibin expression is substantially associated with porcine follicle growth and development

    “Positive Regulation of RNA Metabolic Process” Ontology Group Highly Regulated in Porcine Oocytes Matured In Vitro: A Microarray Approach

    No full text
    The cumulus-oocyte complexes (COCs) growth and development during folliculogenesis and oogenesis are accompanied by changes involving synthesis and accumulation of large amount of RNA and proteins. In this study, the transcriptomic profile of genes involved in “oocytes RNA synthesis” in relation to in vitro maturation in pigs was investigated for the first time. The RNA was isolated from oocytes before and after in vitro maturation (IVM). Interactions between differentially expressed genes/proteins belonging to “positive regulation of RNA metabolic process” ontology group were investigated by STRING10 software. Using microarray assays, we found expression of 12258 porcine transcripts. Genes with fold change higher than 2 and with corrected p value lower than 0.05 were considered as differentially expressed. The ontology group “positive regulation of RNA metabolic process” involved differential expression of AR, INHBA, WWTR1, FOS, MEF2C, VEGFA, IKZF2, IHH, RORA, MAP3K1, NFAT5, SMARCA1, EGR1, EGR2, MITF, SMAD4, APP, and NR5A1 transcripts. Since all of the presented genes were downregulated after IVM, we suggested that they might be significantly involved in regulation of RNA synthesis before reaching oocyte MII stage. Higher expression of “RNA metabolic process” related genes before IVM indicated that they might be recognized as important markers and specific “transcriptomic fingerprint” of RNA template accumulation and storage for further porcine embryos growth and development
    corecore