80 research outputs found

    Prospective Study in a Porcine Model of Sarcoptes scabiei Indicates the Association of Th2 and Th17 Pathways with the Clinical Severity of Scabies

    Get PDF
    BackgroundUnderstanding of scabies immunopathology has been hampered by the inability to undertake longitudinal studies in humans. Pigs are a useful animal model for scabies, and show clinical and immunologic changes similar to those in humans. Crusted scabies can be readily established in pigs by treatment with the glucocorticoid dexamethasone (Dex).Methodology/ Principal FindingsProspective study of 24 pigs in four groups: a) Scabies+/Dex+, b) Scabies+/Dex-, c) Scabies-/Dex+ and d) Scabies-/Dex-. Clinical symptoms were monitored. Histological profiling and transcriptional analysis of skin biopsies was undertaken to compare changes in cell infiltrates and representative cytokines. A range of clinical responses to Sarcoptes scabiei were observed in Dex treated and non-immunosuppressed pigs. An association was confirmed between disease severity and transcription of the Th2 cytokines IL-4 and IL-13, and up-regulation of the Th17 cytokines IL-17 and IL-23 in pigs with crusted scabies. Immunohistochemistry revealed marked infiltration of lymphocytes and mast cells, and strong staining for IL-17.Conclusions/ SignificanceWhile an allergic Th2 type response to scabies has been previously described, these results suggest that IL-17 related pathways may also contribute to immunopathology of crusted scabies. This may lead to new strategies to protect vulnerable subjects from contracting recurrent crusted scabies

    An exploratory study to assess the activity of the acarine growth inhibitor, fluazuron, against Sarcoptes scabei infestation in pigs

    Get PDF
    Background: The most common treatments for scabies in human and veterinary settings are topical 5% permethrin or systemic treatment with ivermectin. However, these treatments have very little activity against arthropod eggs, and therefore repeated treatment is frequently required. In-vitro, biochemical and molecular studies have demonstrated that human mites are becoming increasingly resistant to both acaricides. To identify alternate acaricides, we undertook a pilot study of the in vivo activity of the benzoylphenyl urea inhibitor of chitin synthesis, fluazuron, in pigs with sarcoptic mange. Findings. Pigs (n = 5) were infested with S. scabei var suis, and randomised to treatment at the start of peak infestation with fluazuron at a dose of 10 mg/kg/day per os for 7 days (n = 3) or no treatment (n = 2). Clinical scores, skin scrapings for mite counts and blood sampling for pharmacokinetic analysis were undertaken. Fluazuron was well absorbed in treated pigs with measureable blood levels up to 4 weeks post treatment. No adverse effects were observed. Modest acaricidal activity of the compound was observed, with a reduction in severity of skin lesions in treated pigs, as well as a reduction in number of scabies mite's early life stages. Conclusions: The moderate efficacy of fluazuron against scabies mites indicates a lead to the development of alternate treatments for scabies, such as combination therapies that maybe applicable for human use in the future

    Molecular diagnosis of scabies using a novel probe-based polymerase chain reaction assay targeting high-copy number repetitive sequences in the Sarcoptes scabiei genome

    Get PDF
    Background The suboptimal sensitivity and specificity of available diagnostic methods for scabies hampers clinical management, trials of new therapies and epidemiologic studies. Additionally, parasitologic diagnosis by microscopic examination of skin scrapings requires sample collection with a sharp scalpel blade, causing discomfort to patients and difficulty in children. Polymerase chain reaction (PCR)-based diagnostic assays, combined with non-invasive sampling methods, represent an attractive approach. In this study, we aimed to develop a real-time probe-based PCR test for scabies, test a non-invasive sampling method and evaluate its diagnostic performance in two clinical settings. Methodology/Principal findings High copy-number repetitive DNA elements were identified in draft Sarcoptes scabiei genome sequences and used as assay targets for diagnostic PCR. Two suitable repetitive DNA sequences, a 375 base pair microsatellite (SSR5) and a 606 base pair long tandem repeat (SSR6), were identified. Diagnostic sensitivity and specificity were tested using relevant positive and negative control materials and compared to a published assay targeting the mitochondrial cox1 gene. Both assays were positive at a 1:100 dilution of DNA from a single mite; no amplification was observed in DNA from samples from 19 patients with other skin conditions nor from house dust, sheep or dog mites, head and body lice or from six common skin bacterial and fungal species. Moderate sensitivity of the assays was achieved in a pilot study, detecting 5/7 (71.4% [95% CI: 29.0% - 96.3%]) of clinically diagnosed untreated scabies patients). Greater sensitivity was observed in samples collected by FLOQ swabs compared to skin scrapings. Conclusions/Significance This newly developed qPCR assay, combined with the use of an alternative non-invasive swab sampling technique offers the possibility of enhanced diagnosis of scabies. Further studies will be required to better define the diagnostic performance of these tests

    The Effect of Insecticide Synergists on the Response of Scabies Mites to Pyrethroid Acaricides

    Get PDF
    Synergists are commonly used in combination with pesticides to suppress metabolism-based resistance and increase the efficacy of the agents. They are also useful as tools for laboratory investigation of specific resistance mechanisms based on their ability to inhibit specific metabolic pathways. To determine the role of metabolic degradation as a mechanism for acaricide resistance in human scabies, PBO (piperonyl butoxide), DEF (S,S,S-tributyl phosphorotrithioate) and DEM (diethyl maleate) were used with permethrin as synergists in a bioassay of mite killing. A statistically significant difference in survival time of permethrin-resistant Sarcoptes scabiei variety canis was noted when any of the three synergists were used in combination with permethrin compared to survival time of mites exposed to permethrin alone (p<0.0001). These results indicate the potential utility of synergists in reversing tolerance to pyrethroid-based acaricides (i.e. the addition of synergists to permethrin-containing topical acaricide cream commonly used to treat scabies). To further verify specific metabolic pathways being inhibited by these synergists, enzyme assays were developed to measure esterase, glutathione S-transferase (GST) and cytochrome P450 monooxygenase activity in scabies mites. Results of in vitro enzyme inhibition experiments showed lower levels of esterase activity with DEF; lower levels of GST activity with DEM and lower levels of cytochrome monooxygenase activity with PBO. These findings indicate a metabolic mechanism as mediating pyrethroid resistance in scabies mites

    A Tractable Experimental Model for Study of Human and Animal Scabies

    Get PDF
    Scabies, a neglected parasitic disease caused by the microscopic mite Sarcoptes scabiei, is a major driving force behind bacterial skin infections in tropical settings. Aboriginal and Torres Strait Islander peoples are nearly twenty times more likely to die from acute rheumatic fever and rheumatic heart disease than individuals from the wider Australian community. These conditions are caused by bacterial pathogens such as Group A streptococci, which have been linked to underlying scabies infestations. Community based initiatives to reduce scabies and associated disease have expanded, but have been threatened in recent years by emerging drug resistance. Critical biological questions surrounding scabies remain unanswered due to a lack of biomedical research. This has been due in part to a lack of either a suitable animal model or an in vitro culture system for scabies mites. The pig/mite model reported here will be a much needed resource for parasite material and will facilitate in vivo studies on host immune responses to scabies, including relations to associated bacterial pathogenesis, and more detailed studies of molecular evolution and host adaptation. It represents the missing tool to extrapolate emerging molecular data into an in vivo setting and may well allow the development of clinical interventions

    Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination.

    Get PDF
    INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority. METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia. RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ ΞΌL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105). CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings

    Pcr-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var Hominis)

    No full text
    Permethrin, in the form of a topical cream, is being increasingly used for community-based programs to control endemic scabies. The development of resistance has reduced the use of pyrethroids for the control of many arthropods of economic and health importance. The best recognized form of pyrethroid resistance, known as knockdown resistance or kdr, has been linked to specific mutations in the target of these agents, the para-homologous voltage-sensitive sodium channel gene (Vssc). To develop tools to study resistance to pyrethroid acaricides, we cloned 3711 and 6151 bp, respectively, of cDNA and genomic fragments of the Vssc gene from scabies mite, Sarcoptes scabiei. The sequence encompasses the major polymorphic amino acid residues associated with pyrethroid resistance. A polymerase chain reaction-based strategy has been developed that enables genotyping individual scabies mites. This will facilitate early detection and monitoring of pyrethroid resistance in scabies mite populations under drug selection pressure. Copyrigh

    Origin and Dissemination of Chloroquine-Resistant Plasmodium falciparum with Mutant pfcrt Alleles in the Philippines

    Get PDF
    The pfcrt allelic type and adjacent microsatellite marker type were determined for 82 Plasmodium falciparum isolates from the Philippines. Mutant pfcrt allelic types P1a and P2a/P2b were dominant in different locations. Microsatellite analysis revealed that P2a/P2b evolved independently in the Philippines, while P1a shared common ancestry with Papua New Guinea chloroquine-resistant parasites

    Epidemiology of mutant Plasmodium falciparum parasites lacking histidine-rich protein 2/3 genes in Eritrea 2 years after switching from HRP2-based RDTs

    No full text
    Eritrea was the first African country to complete a nationwide switch in 2016 away from HRP2-based RDTs due to high rates of false-negative RDT results caused by Plasmodium falciparum parasites lacking hrp2/hrp3 genes. A cross-sectional survey was conducted during 2019 enrolling symptomatic malaria patients from nine health facilities across three zones consecutively to investigate the epidemiology of P. falciparum lacking hrp2/3 after the RDT switch. Molecular analyses of 715 samples revealed the overall prevalence of hrp2-, hrp3-, and dual hrp2/3-deleted parasites as 9.4% (95%CI 7.4–11.7%), 41.7% (95% CI 38.1–45.3%) and 7.6% (95% CI 5.8–9.7%), respectively. The prevalence of hrp2- and hrp3-deletion is heterogeneous within and between zones: highest in Anseba (27.1% and 57.9%), followed by Gash Barka (6.4% and 37.9%) and Debub zone (5.2% and 43.8%). hrp2/3-deleted parasites have multiple diverse haplotypes, with many shared or connected among parasites of different hrp2/3 status, indicating mutant parasites have likely evolved from multiple and local parasite genetic backgrounds. The findings show although prevalence of hrp2/3-deleted parasites is lower 2 years after RDT switching, HRP2-based RDTs remain unsuitable for malaria diagnosis in Eritrea. Continued surveillance of hrp2/3-deleted parasites in Eritrea and neighbouring countries is required to monitor the trend.</p
    • …
    corecore