17 research outputs found

    The temporal patterns of disease severity and prevalence in schistosomiasis

    Get PDF
    Schistosomiasis is one of the most widespread public health problems in the world. In this work, we introduce an eco-epidemiological model for its transmission and dynamics with the purpose of explaining both intra-and inter-annual fluctuations of disease severity and prevalence. The model takes the form of a system of nonlinear differential equations that incorporate biological complexity associated with schistosome's life cycle, including a prepatent period in snails (i.e., the time between initial infection and onset of infectiousness). Nonlinear analysis is used to explore the parametric conditions that produce different temporal patterns (stationary, endemic, periodic, and chaotic). For the time-invariant model, we identify a transcritical and a Hopf bifurcation in the space of the human and snail infection parameters. The first corresponds to the occurrence of an endemic equilibrium, while the latter marks the transition to interannual periodic oscillations. We then investigate a more realistic time-varying model in which fertility of the intermediate host population is assumed to seasonally vary. We show that seasonality can give rise to a cascade of period-doubling bifurcations leading to chaos for larger, though realistic, values of the amplitude of the seasonal variation of fertility. (C) 2015 AIP Publishing LLC

    Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis

    Get PDF
    Schistosomiasis is a parasitic infection that is widespread in sub-Saharan Africa, where it represents a major health problem. We study the drivers of its geographical distribution in Senegal via a spatially explicit network model accounting for epidemiological dynamics driven by local socioeconomic and environmental conditions, and human mobility. The model is parameterized by tapping several available geodatabases and a large dataset of mobile phone traces. It reliably reproduces the observed spatial patterns of regional schistosomiasis prevalence throughout the country, provided that spatial heterogeneity and human mobility are suitably accounted for. Specifically, a fine-grained description of the socioeconomic and environmental heterogeneities involved in local disease transmission is crucial to capturing the spatial variability of disease prevalence, while the inclusion of human mobility significantly improves the explanatory power of the model. Concerning human movement, we find that moderate mobility may reduce disease prevalence, whereas either high or low mobility may result in increased prevalence of infection. The effects of control strategies based on exposure and contamination reduction via improved access to safe water or educational campaigns are also analyzed. To our knowledge, this represents the first application of an integrative schistosomiasis transmission model at a whole-country scale

    The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis region, Senegal

    Get PDF
    AbstractSchistosomiasis is a parasitic, water-related disease that is prevalent in tropical and subtropical areas of the world, causing severe and chronic consequences especially among children. Here we study the spatial spread of this disease within a network of connected villages in the endemic region of the Lower Basin of the Senegal River, in Senegal. The analysis is performed by means of a spatially explicit metapopulation model that couples local-scale eco-epidemiological dynamics with spatial mechanisms related to human mobility (estimated from anonymized mobile phone records), snail dispersal and hydrological transport of schistosome larvae along the main water bodies of the region. Results show that the model produces epidemiological patterns consistent with field observations, and point out the key role of spatial connectivity on the spread of the disease. These findings underline the importance of considering different transport pathways in order to elaborate disease control strategies that can be effective within a network of connected populations

    Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging--initial experience

    No full text
    Purpose: To prospectively evaluate use of diffusion-weighted (DW) magnetic resonance (MR) images and apparent diffusion coefficient (ADC) maps for determination of the consistency of macroadenomas. Materials and Methods: The study protocol was approved by the institutional ethics committee, and informed consent was obtained from all patients. Twenty-two patients with pituitary macroadenoma (10 men, 12 women; mean age, 54 years ± 17.09 [standard deviation]; range, 21-75 years) were examined. All patients underwent MR examination, which included T1-weighted spin-echo and T2-weighted turbo spin-echo DW imaging with ADC mapping and contrast material-enhanced T1-weighted spin-echo imaging. Regions of interest (ROIs) were drawn in the macroadenomas and in normal white matter on DW images, ADC maps, and conventional MR images. Consistency of macroadenomas was evaluared at surgery and was classified as soft, intermediate, or hard. Histologic examination was performed on surgical specimens of macroadenomas. Mean ADC values, signal intensity (SI) ratios of tumor to white matter within ROIs on conventional and DW MR images, and degree of enhancement were compared with tumor consistency and with percentage of collagen content at histologic examination by using analysis of variance for linear trend. Results: The mean value of ADC in the soft group was (0.663 ± 0.109) × 10-3 mm2/sec; in the intermediate group, (0.842 ± 0.081) × 10-3 mm2/sec; and in the hard group, (1.363 ± 0.259) × 10-3 mm 2/sec. Statistical analysis revealed a significant correlation between tumor consistency and ADC values, DW image SI ratios, T2-weighted image SI ratios, and percentage of collagen content (P <"001, analysis of variance). No other statistically significant correlations were found. Conclusion: Findings in this study suggest that DW MR images with ADC maps can provide information about the consistency of macroadenomas
    corecore