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Schistosomiasis is one of the most widespread public health problems in the world. In this work,

we introduce an eco-epidemiological model for its transmission and dynamics with the purpose of

explaining both intra- and inter-annual fluctuations of disease severity and prevalence. The model

takes the form of a system of nonlinear differential equations that incorporate biological

complexity associated with schistosome’s life cycle, including a prepatent period in snails (i.e., the

time between initial infection and onset of infectiousness). Nonlinear analysis is used to explore

the parametric conditions that produce different temporal patterns (stationary, endemic, periodic,

and chaotic). For the time-invariant model, we identify a transcritical and a Hopf bifurcation in the

space of the human and snail infection parameters. The first corresponds to the occurrence of an

endemic equilibrium, while the latter marks the transition to interannual periodic oscillations. We

then investigate a more realistic time-varying model in which fertility of the intermediate host

population is assumed to seasonally vary. We show that seasonality can give rise to a cascade of

period-doubling bifurcations leading to chaos for larger, though realistic, values of the amplitude

of the seasonal variation of fertility. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4908202]

In recent years, mathematical modeling has become an

extremely useful tool to understand and analyze the

temporal evolution of infections, also helpful in sup-

porting the development of control strategies. In this

work, we propose stability and bifurcation analyses of a

nonlinear model of schistosomiasis, a waterborne para-

sitic disease caused by a snail-transmitted trematode.

Our aim is to explain the interannual oscillations that

characterize schistosomiasis prevalence in endemic

regions, introducing some innovation in modeling the

intermediate snail hosts. The analysis is based on a sys-

tem of differential equations that describe the dynamics

of schistosomes (adult parasites and larval stages),

snails (intermediate host), and humans (definitive host).

The main contributions of the present study are (a) to

find the equilibria of the system under different para-

metric conditions and to study their stability, (b) to

provide a nearly complete bifurcation analysis for the

model, and (c) to investigate a more realistic version

of the model accounting for time-varying ecological

dynamics of the snail host.

I. INTRODUCTION

Schistosomiasis, also known as bilharziasis, is one of

the commonest waterborne diseases. It is a major parasitic

infection in many areas of the developing world, affecting

more than 200 � 106 individuals in 74 countries and putting

at risk about 600 � 106 people worldwide.1 Schistosomiasis

is considered one of the Neglected Tropical Diseases

(NTDs) and in terms of impact is second only to malaria as

the most devastating parasitic disease.2 Its burden is dispro-

portionately concentrated in Africa. According to the World

Health Organization, many control programs are available

which can successfully eliminate the disease. However,

schistosomiasis remains a major cause of mortality and mor-

bidity in a number of countries, notably those of sub-Saharan

Africa,2 but also in some areas of Asia and Latin America.1

In particular, in sub-Saharan Africa schistosomiasis contrib-

utes to more than 200 000 deaths annually, with an estimated

disability-adjusted life years (DALYs, i.e., the number

of years lost due to ill-health, disability, or early death) of

4.5 � 106.2

It is estimated that 120 � 106 of infected individuals

worldwide are symptomatic, with 20 � 106 developing

severe symptoms from the disease. Although the disease has

a low mortality rate, the related morbidity caused by this dis-

ease can inflict a heavy health burden on high-prevalence

communities. The largest intensity of infection is usually

observed in children, who are especially vulnerable and, if

not treated, suffer chronic consequences into adulthood.

Typically, parasites inside human tissues induce a response

that causes local and systemic pathological effects ranging

from anaemia, impaired growth and cognitive development,

and decreased physical fitness, to organ-specific effects such
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as fibrosis of the liver, bladder cancer, and urogenital

inflammation.3,4

Schistosomiasis is caused by trematode parasites belong-

ing to the genus Schistosoma. Most human infections are

caused by three major species: Schistosoma mansoni, S. hae-
matobium, or S. japonicum.2 These parasites need as

intermediate hosts certain types of freshwater snails belonging

to the genus Biomphalaria for S. mansoni, Bulinus for S. hae-
matobium, and Oncomelania for S. japonicum. The geograph-

ical distribution of schistosomes is in fact defined by the

specific range of snail host habitat. Thus S. haematobium and

S. mansoni occur in both Africa and the Middle East, whereas

only S. mansoni is present in the Americas. S. japonicum is

localized in Asia, primarily the Philippines and China.3

The infectious form of the parasite (for humans) is a

freely swimming larval stage known as cercaria. Cercariae

emerge from the snail, hence contaminating water, and can

infect humans penetrating their skin when they come into

contact with contaminated freshwater.2 Inside the human

body, cercariae shed their tails and become schistosomula,

the maturing larvae of the parasite. These larvae migrate

through the body and need about 5–7 weeks before becom-

ing sexually mature adults.3 The adult male and female

worms colonize human blood vessels, where they can live

for years, mating and producing hundreds to thousands of

fertilized eggs daily. The eggs can either leave the body

of the host by being shed in the environment through faeces

(S. mansoni, S. japonicum) or urine (S. haematobium), or

become trapped inside the human host tissues. The severity

and complexity of the pathology of schistosomiasis are

related to the quantity of these encysted eggs.2 The eggs

released out of the human body that reach freshwater can

hatch into larvae called miracidia, the parasite larval form

that is infectious for snail hosts. In the snail, miracidia

undergo asexual replication for 4–6 weeks,3 then the snail

becomes infective and starts releasing tens of thousands of

cercariae into the water. The time between initial snail infec-

tion and onset of infectiousness is the so-called prepatent

period.3 Cercariae can survive in freshwater for 1–3 days,3

then they need to find a human host to complete the para-

site’s life cycle (Fig. 1).

The occurrence of schistosomiasis displays both inter-

and intra-annual variability (see, e.g., Fig. 2 for some sample

patterns from Limpopo Province, South Africa,5 and Wonji,

Ethiopia6). While intra-annual oscillations can be explained

by the strong seasonal fluctuations of snail demography,

interannual fluctuations, which can be more or less wide,

may be caused by nonlinearities in demographic and epide-

miological mechanisms.

Mathematical modeling of disease dynamics has proved

to be a useful tool in many human infections, in particular, to

understand the transmission characteristics of parasitic dis-

eases in order to develop and evaluate the effects of control

programs,7–9 and to make predictions on the effects of

different intervention options,10–12 also exploring control

strategies targeted at high-risk behavioral groups.13,14

Transmission models of schistosomiasis have been in exis-

tence since the 1960s.15,16 These models are generally based

on some limiting assumptions (e.g., homogeneous popula-

tion,16 single host population and one parasite stage17). More

recent studies have tried to relax these assumptions, e.g., by

accounting for the demographic dynamics of human and

snail populations, or by including some additional aspects

(e.g., infection age of snails,18,19 parasite’s mating structure

and multiple resistant schistosome strains20). They usually

neglect the dynamics of the intermediate life stages of the

parasite, thus reducing model complexity.

In this paper, we want to explore the mechanisms that

drive the temporal variability of schistosomiasis severity and

prevalence using a model of intermediate complexity, which

allows a thorough bifurcation analysis. Our innovation con-

cerns specifically snail dynamics. In fact, the presence of a

prepatent period in snails,3,18,19 in which the infection is

ongoing but release of cercariae cannot be detected, suggests

the division of snails into three classes, according to their

infection stage, similarly to a classical Susceptible-Exposed-

Infectious epidemiological model. This model is less com-

plex than those including the snails’ infection age,18,19 yet it

is fairly realistic and simple enough to allow an analytical

investigation of the link between the ecology of the snails

and the variability of typical disease patterns observed in

many endemic regions.

FIG. 1. Schistosoma life cycle. (a)

Paired adult worms (larger male

enfolding slender female). (b) Eggs

(left to right, S. mansoni, S. japonicum,

S. haematobium). (c) Ciliated miraci-

dium. (d) Intermediate host snails (left

to right, Biomphalaria, Bulinus,

Oncomelania). (e) Cercaria.
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II. THE MODEL

A. Model formulation

Our work is based on a system of differential equations

that describe the dynamics of humans, schistosomes, and

snails, according to the ecological and epidemiological

mechanisms that characterize human schistosomiasis trans-

mission (Fig. 1). The model can be considered as the combi-

nation of two sub-systems describing, respectively, the

dynamics of humans and adult worms in their tissues, and

snails dynamics.

The first sub-system is governed by two differential

equations that describe the dynamics of human hosts N and

of the adult form of parasites P. The man-schistosome inter-

action is modeled as a macroparasitic infection7

_N ¼ lH H � Nð Þ � aP

_P ¼ bCN � lH þ lP þ að ÞP� a
k þ 1

k

P2

N
:

8<
: (1)

Human hosts are assumed to be characterized by a con-

stant recruitment lHH (with H being the community size),

and a natural death rate lH. We assume that parasites induce

mortality proportionally to their number within each human

host, i.e., proportionally to the mean worm burden P/N. With

a being a constant determining the pathogenicity of the para-

site to the human host,17 the total losses due to disease-

induced mortality of humans thus are

a
P

N
N ¼ aP: (2)

Parasites’ recruitment is proportional to the number of

cercariae C in the environment and to an infection rate b that

includes several aspects of survival and maturation of cercar-

iae inside and outside the human hosts. Since the timescale

of the free-living larval stages is much shorter than that of

the mature worm in the human host and the developing stage

in snails, cercariae are assumed to be proportional to the total

number I of infectious shedding snails,7,18 C¼ rI, where r

represents the number of cercariae released by one infected

snail multiplied by the residence time of cercariae in water.

The death rate of parasites within the human host population

has three components. First, there are losses due to natural

host mortality ðlHPÞ. Second, there is a component linked to

parasite mortality within the host. Assuming an intrinsic

death rate lP, these losses make a contribution of lPP.

Third, there are losses due to disease-induced mortality of

humans. Since macroparasites are almost always unevenly

distributed across their host populations, negative binomial

is often used for modeling parasite differences in load among

different individuals.18 Thus, these losses can be written as a

function of the clumping parameter k, which gives an inverse

measure of the degree of aggregation of the parasites within

the hosts17

a
P

N
N 1þ k þ 1

k

P

N

� �
¼ aPþ a

k þ 1

k

P2

N
: (3)

The second sub-system describes the dynamics of snails.

In order to consider the prepatent period after initial infec-

tion, snail dynamics is described via a compartmental SEI-

like model that introduces a delay between infection and

onset of infectiousness. The snail population is thus divided

into Susceptible, Exposed, and Infectious individuals,

according to their ability to be infected and to infect (i.e.,

their ability to release cercariae after initial infection). The

system has the following form:

_S ¼ bðS;E; IÞ � lSS� qMS

_E ¼ qMS� ðlS þ dSÞE� dE

_I ¼ dE� ðlS þ dSÞI;

8><
>: (4)

in which b is the recruitment rate of susceptible snails. Other

studies have shown that snail populations are regulated by

density-dependent mechanisms21 and that the introduction of

a nonlinear recruitment function seems to play an important

role in generating realistic patterns of schistosome infec-

tions.18 Here, we assume that snails are born uninfected

FIG. 2. Yearly and monthly occurrence of schistosomiasis in South Africa and Ethiopia. (a) Overall yearly prevalence of urinary schistosomiasis amongst

patients attending the main hospitals in the Vhembe district of Limpopo Province, South Africa, between 1998 and 2004. (b) Overall yearly number of S. man-
soni patients between 1999 and 2008 from the only hospital in Wonji, Ethiopia. (c) Occurrence of S. haematobium in urine samples submitted for urinary tract

infections to the laboratory of the Vhembe district hospitals between 2001 and 2003. (d) Monthly data of the number of S. mansoni patients in Wonji between

1999 and 2001. Data elaborated from Samie et al.5 (panels (a) and (c)) and Xue et al.6 (panels (b) and (d)).
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according to a logistic recruitment function and that infected

snails (both exposed and infectious) are unable to reproduce,

thus

bðS;E; IÞ ¼ �S½1� cðSþ Eþ IÞ�; (5)

where � is the intrinsic natality rate and c captures the effect

of density dependence among snails. In addition to a natural

death rate lS, infected snails are also subject to a disease-

induced death rate dS. We assume that a population of unin-

fected snails is always viable, namely, � > lS. Recruitment

of exposed snails depends on the infection rate q and the

number of miracidia M in the aquatic environment.

Miracidia, being short-lived, are assumed to be proportional

to the number of adult parasites through the per capita egg

laying rate lP of adult parasites and the residence time of

miracidia in water sM, so that M ¼ lPsMP. For simplicity of

notation, we introduce v ¼ qlPsM to aggregate the various

intermediate steps involved in snail infection. After infec-

tion, snails enter the Exposed compartment (they are infected

but not yet infectious, i.e., they do not release cercariae).

After a prepatent period of average duration 1/d, they com-

plete the cycle entering into the Infectious class and starting

to release cercariae.

Combining (1)–(5), the full model that describes schisto-

somiasis dynamics is represented by the following system of

nonlinear differential equations:

_N ¼ lH H � Nð Þ � aP

_P ¼ brIN � lH þ lP þ að ÞP� a
k þ 1

k

P2

N
_S ¼ �S 1� c Sþ Eþ Ið Þ½ � � lSS� vPS

_E ¼ vPS� lS þ dSð ÞE� dE

_I ¼ dE� lS þ dSð ÞI:

8>>>>>>>>><
>>>>>>>>>:

(6)

All variables and parameters of the model are listed in

Table I.

B. Parameter estimation

Parameters associated with infection of human hosts are

usually quite difficult to estimate. Here, part of the parame-

ters is derived from literature, and part is allowed to vary

because their values are uncertain or dependent upon exoge-

nous conditions. In these latter cases, sensitivity and bifurca-

tion analyses are usually the best approach to identify

parameters able to produce realistic results22 and to evaluate

the effects of combined changes in the values of specific pa-

rameters.18 This approach has been used also in previous

studies on other schistosomiasis models.23,24

We use a human population of size H¼ 1000 individu-

als with a life expectancy of 70 yr (lH¼ 4 � 10�5/day). The

life expectancy of adult parasites is 5 yr19,25 (lP¼ 5.5 �
10�4/day). Parasite-induced mortality in the human host is

considered to be negligible (for example, the value estimated

for an endemic area in Sudan was a¼ 1.1 � 10�7/day.26

Therefore, we first set a¼ 0 to make the model amenable to

analytical investigation. This hypothesis is later relaxed, by

allowing a to assume values> 0. In this latter case, the

clumping parameter of the negative binomial distribution of

parasites within human hosts is set to the value estimated in

a previous study of a similar model,19 k¼ 0.243.

As for snails, we consider an average lifetime of 1 yr19

for uninfected snails (lS¼ 2. � 10�3/day) and 2 months19

for infected snails (dS¼ 1.7 � 10�2/day). The average dura-

tion of the prepatent period is assumed to be about 2

weeks19,25 (d¼ 6.7 � 10�2/day), and the average number of

cercariae released by one infected snail to be 350/day,19 thus

r¼ 700 cercariae/snail (with average residence time of 2

days3). We assume a carrying capacity of �100 snails/m2 in

absence of the parasite27 (c¼ 10�2 m2/snail). The intrinsic

natality rate of snails is strongly dependent on the environ-

mental conditions28 and exposition to schistosomes.21 We

assume that each snail produces at most 180 eggs in 10

weeks21 and, with a hatching rate of about 30%, we set

�¼ 0.7/day. All parameters are listed in Table I.

TABLE I. Variables and parameters of the model: description, value, unit and references.

Name Description Value Units References

N Number of human hosts Individual

P Number of adult parasites Parasite

S Density of susceptible snails Snail � m�2

E Density of exposed snails Snail � m�2

I Density of infectious snails Snail � m�2

H Human community size 1000 Individual

lH Per capita natural death rate of humans 4 � 10�5 Day�1

lP Per capita natural death rate of adult parasites 5.5 � 10�4 Day�1 19 and 25

lS Per capita natural death rate of snails 2.7 � 10�3 Day�1 19

dS Disease-induced death rate of snails 1.7 � 10�2 Day�1 19

d Exit-from-prepatency rate in snails 6.7 � 10�2 Day�1 19 and 25

r Cercariae releasing rate by one snail 700 Cercaria � snail�1 3 and 19

a Disease-induced death rate of humans per unit of parasite burden 0, 1.1 � 10�7 Day�1 26

k Clumping parameter of parasite distribution 0.243 — 19

c Rate of competition for resources among snails 10�2 m2 � snail�1 27

� Intrinsic natality rate of snails 0.7 Day�1 21

v Per capita rate of infection of snails Variable Parasite�1 � day�1

b Per capita rate of infection of humans Variable Parasite � m2 � cercaria�1 � individual�1 � day�1
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The rates of human and snail infection (b and v) are the

most difficult to be quantified. Note that both parameters are

the product of several factors. The first includes the proba-

bility of cercarial survival inside the human host and of mat-

uration into the adult form of the parasite; the latter includes

the number of produced eggs and their probability of reach-

ing the aquatic environment, developing into miracidia and

successfully infecting a susceptible snail. Due to the com-

plexity associated with the definition of these parameters,

we conduct a bifurcation analysis over a large parametric

range.

III. RESULTS

A. Equilibria and stability

The nonlinear analysis of the system is performed under

the assumption that the extra human mortality rate induced

by one adult parasite is much smaller than the other parame-

ters, so that it can be set to zero. Thus we study the following

simplified system:

_N ¼ lHðH � NÞ
_P ¼ brIN � ðlH þ lPÞP
_S ¼ �S½1� cðSþ Eþ IÞ� � lsS� vPS

_E ¼ vPS� ðlS þ dSÞE� dE

_I ¼ dE� ðlS þ dSÞI:

8>>>>>>>><
>>>>>>>>:

(7)

Because the first equation is not coupled to the rest of

system (7), it is sufficient to analyze the sub-system with

state vector X¼ [P,S,E,I]. Setting _X ¼ 0 and N¼H provides

two equilibria:

• A parasite-free equilibrium X0 ¼ ðP0; S0;E0; I0Þ, given by:

X0 ¼
S0 ¼

� � lS

�c
P0 ¼ 0;E0 ¼ I0 ¼ 0:

8<
: (8)

• An endemic equilibrium Xþ ¼ ðPþ; Sþ;Eþ; IþÞ, given by:

Xþ ¼

Pþ ¼
brH

lH þ lP

Iþ

Sþ ¼
lH þ lPð Þ lS þ dS þ dð Þ lS þ dSð Þ

vbrHd

Eþ ¼
lS þ dS

d
Iþ

Iþ ¼

� � lS

�c
� Sþ

lS þ dS

d
þ vbrH

�c lH þ lPð Þ
þ 1

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(9)

The parasite-free equilibrium X0 is feasible because

� > lS. The endemic equilibrium Xþ is feasible ðIþ > 0Þ iff

S0 > Sþ. As for the stability of the parasite-free equilibrium,

it is easy to prove that X0 is stable if Xþ is unfeasible, unsta-

ble otherwise (see Appendix A). This change of stability cor-

responds to a transcritical bifurcation.29 Its parametric

expression represents the condition for which the Jacobian

matrix associated with X0 has an eigenvalue equal to zero,

and it is given by

� � lS

�c
¼ lH þ lPð Þ lS þ dS þ dð Þ lS þ dSð Þ

vbrHd
: (10)

Via stability analysis, it is also possible to prove that for

some parametric conditions the endemic equilibrium Xþ is

unstable and there exists a stable limit cycle. This occurs via

a supercritical Hopf bifurcation, whose expression is worked

out analytically in Appendix B.

B. Model simulations and bifurcation analysis

Some representative temporal patterns of mean worm

burden dynamics P(t)/H obtained via simulation are shown

in Figs. 3(a)–3(c). The solutions vary from disease-free to

stationary endemic to periodic, this last displaying cycles

characterized by fast increase and slow decrease of the mean

worm burden, with a period of about 3 yr. The simulated par-

asite abundances are in good agreement with actual average

burden data, as estimated from a study on a group of students

and farmers in a village of south-western Sichuan, in

China.11 These realistic patterns are detectable in a large

range of the parameter space for both stationary and periodic

FIG. 3. Temporal patterns of mean

worm burden and 1D bifurcation dia-

gram. Panels (a)–(c) show different

temporal patterns of mean worm bur-

den P(t)/H. The infection rates are set

as: (a) b ¼ 3� 10�8; v ¼ 3� 10�8,

(b) b ¼ 10�5; v ¼ 6� 10�6, and (c)

b ¼ 6� 10�5; v ¼ 8� 10�6. The 1D

bifurcation diagram (d) is computed

for v ¼ 8� 10�6/parasite/day. The

grey shading represents the interval

between lower and upper bounds of

typical mean worm burden values

(60–140 parasites per host) as esti-

mated by Liang et al.11 Units and all

other parameters as in Table I.
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solutions (Figs. 3(b) and 3(c)). Fig. 3(d) shows that the mean

worm burden increases with b and that periodic solutions

can be found for large values of b.

The bifurcation diagram of the model in the parameter

space ðb; vÞ is shown in Fig. 4. For low values of the two

infection rates (e.g., point (a) in Fig. 4), the disease-free

equilibrium is stable and parasites are not able to establish in

the population. For intermediate values of b and v (point

(b)), the endemic equilibrium becomes feasible and stable

via the transcritical bifurcation (TC) identified by Eq. (10).

For larger values of the two infection rates (point (c)), the

endemic equilibrium becomes unstable and periodic solu-

tions originate via a supercritical Hopf bifurcation (H),

whose analytical derivation is reported in Appendix B. Fig. 4

also shows the level curves of the mean worm burden �P=H,

with �P being the time-averaged number of adult parasites

evaluated after transient dynamics vanish. We can notice

that mean worm burden increases with b and, near the tran-

scritical bifurcation, small variations of this parameter can

lead to great variations of parasite abundance. In addition,

for high values of b, the mean worm burden decreases with

the snail infection rate v, while for low values of b it is high-

est for intermediate values of v.

It is obviously possible to relax the hypothesis of no

disease-induced human mortality (a¼ 0) to see whether a

small a> 0 changes the bifurcation structure of model (7).

Figs. 5(a)–5(c) show some simulations obtained with a value

of a> 0 similar to that recorded in Sudan.26 This induces

variations in the population size of human hosts because of

disease-induced mortality (Eq. (6)). In addition, Fig. 5(d)

shows that, for small a, the pattern of bifurcation is

unchanged with both transcritical and Hopf bifurcations

occurring, while for larger a periodic solutions are not possi-

ble. Also, the mean worm burden increases with a up to a

certain value, then it decreases because of the severity of the

disease. However, this happens for values of a far from real-

istic ones (at least one order of magnitude larger than the

value estimated in Sudan26).

C. Periodically forced model

The ecology of a variety of snail habitats has been stud-

ied in several works,2,21 and many recent studies have been

devoted to analyzing the relation between snail dynamics,

environmental conditions, and schistosomiasis transmis-

sion.6,30 In particular, these studies have pointed out that the

snail reproduction rate can vary a lot with the season.

Therefore, in this section we investigate a more realistic,

time-varying version of model (7) in which the reproduction

of snails is assumed to vary periodically during the year, i.e.,

� tð Þ ¼ �0 1þ � sin
2pt

365

� �
:

There exists an extensive literature on epidemiological

models in seasonally varying environments.31–33 Here, how-

ever, the situation is more complex, because endogenously

driven oscillations can be produced even in a constant envi-

ronment for some values of �0 (see Fig. 6(a), black solid

line). Quite complex functioning modes can thus be expected

FIG. 4. Bifurcation curves of model (7) and level curves of time-averaged

mean worm burden in the parameter space ðb; vÞ. The black solid line repre-

sents the transcritical bifurcation curve (TC) that separates the region where

the disease-free equilibrium X0 is stable from the region where the endemic

equilibrium Xþ is feasible and stable. The black dashed line represents the

Hopf bifurcation curve (H) that delimits the region where the model displays

stable periodic solutions. Grey lines represent the level curves of the mean

worm burden for �P=H ¼ 1; 10; 100; 1000 parasites/individual. Points

(a)–(b)–(c) represent the combination of parameters (b; v) used for the simu-

lations shown in the left panels of Fig. 3. All other parameters as in Table I.

FIG. 5. Simulation of the model with

nonvanishing disease-induced mortal-

ity and corresponding 1D bifurcation

diagram. Numerical solutions of model

(6) showing limit cycles obtained with

(a) a¼ 0 (point (c) in Fig. 4), or (b)

a¼ 1.1 � 10–7/day and k¼ 0.243.

(c) Temporal patterns of mean worm

burden P(t)/N(t) for the two cases

(black: a¼ 0; grey: a> 0). (d) Mean

worm burden P/N as a function of a,

for b and v as in points (b) (dashed

line) and (c) (solid line) of Fig. 4. Grey

shading as in Fig. 3. All other parame-

ters as in Table I.
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when � is allowed to vary periodically over time, as it has

been found for predator-prey ecological models in seasonally

forced environments.34 We explore the full complexity of

the temporal patterns of disease severity and prevalence

under seasonal snail ecology using software that implements

continuation techniques, e.g., LOCBIF35 or MATCONT.36 A

simplified sketch of the bifurcation diagram in the parameter

space ð�; �0Þ is shown in Fig. 6(b).

Above the Hopf bifurcation point H on the �0-axis, the

unperturbed system reaches a stable equilibrium, while

below that point the attractor is a limit cycle (with period of

approximately 1.4 yr close to the bifurcation). Therefore, a

Neimark-Sacker bifurcation curve is rooted at point H: while

crossing the curve from above, the limit cycle of the per-

turbed system becomes unstable and a stable torus arises.

The two curves LPC2 merging in T2 are limit-point-of-cycle

bifurcations that involve solutions with period two years.

They are expected to emerge in the seasonally perturbed

system from where, at �¼ 0, the stable periodic solution has

period two years.37 There are also several codimension-2

bifurcation points, only a few of which are shown in Fig.

6(b). The strong resonance 1:2 point at the junction of NS

and PD1 or the generalized period doubling point that con-

nects the lower LPC2 curve to PD1 are both expected and

well-described in other bifurcation studies involving

predator-prey models (such as Ref. 38). We notice that, de-

spite the many similarities between our sketched diagram

and the one obtained in those studies (see Fig. 1 in Ref. 38),

here we also detect codimension-2 points of different kind,

such as the cusp C in Fig. 6(b). Nevertheless, we do not

discuss them in detail here because they occur in parametric

regions that are not very focal to our epidemiologically

oriented analysis.

There exist two chaotic regions in the parameter space,

which originate from different routes: the cascade of period-

doubling bifurcations (e.g., point (i) in Fig. 6(b)) and the

torus breakdown (exemplified by point (ii) in Fig. 6(b)).

These two kinds of strange attractors are shown in Fig. 7

together with their so-called peak-to-peak maps39 and the

power spectra of the mean worm burden time series. As

expected, the peak-to-peak map forms a relatively smooth

curve in the case of the period-doubling route to chaos, and a

more complex structure that is reminiscent of a torus in the

case of torus breakdown.39 Furthermore, spectral analysis

shows pronounced peaks that represent the characteristic

periodicity of the cycle/torus from which each chaotic attrac-

tor originated. However, in both cases harmonic and sub-

harmonic peaks emerge together with a continuous spectrum

of frequencies, especially in the first route.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed a new model of schisto-

somiasis dynamics that, being of intermediate complexity, is

both realistic and amenable to a thorough analysis of its tem-

poral patterns. It neglects the dynamics of the larval stages

of schistosomes, which have a much shorter lifespan than the

adult parasites, but accounts for the population dynamics of

snails and the parasite burden inside the human host. There

exist several mathematical formulations to describe this in-

fectious disease in the literature. However, our approach

shows that it is possible to qualitatively reproduce both the

intra- and inter-annual variability of prevalence patterns

observed in many endemic regions via a simple, classical

SEI-like model for snails.

We have first found the existence and stability condi-

tions for the disease-free and endemic equilibria under the

assumption that the extra human mortality rate induced by

one adult parasite is negligible. Considering a time-constant

environment for snails, we have demonstrated that the insta-

bility of the disease-free equilibrium corresponds to the exis-

tence of a unique endemic equilibrium (transcritical

bifurcation), which can lose stability under some parametric

conditions (supercritical Hopf bifurcation). The results imply

that the basic mechanisms included in our model can destabi-

lize the system, so that periodic interannual fluctuations can

arise.

The inclusion of logistic recruitment for the snail popu-

lation and of a prepatency period (incorporated via the

Exposed compartment) leads to complex and realistic pat-

terns. We have analyzed the whole range of model behaviors

in the parameter space of the human and snail infection rates,

which we choose as most significant and subject to uncer-

tainty and wide variations (other parameters are set to values

obtained from the relevant literature). Besides qualitative

changes in system dynamics, different combinations of

FIG. 6. Investigation of the time-

varying version of model (7). (a) 1D

bifurcation diagram computed for �¼ 0

(black line) or � ¼ 0:1 (grey line). Grey

shading as in Fig. 3. (b) Bifurcation

diagram in the parameter space ð�; �0Þ
displaying supercritical (PD1, PD2) and

subcritical ðPDsub
1 Þ period-doubling

bifurcations, Neimark-Sacker bifurca-

tion (NS), and tangent of cycles bifur-

cation (LPC2). Diagrams are computed

for b ¼ 10�5 and v ¼ 10�5. All other

parameters as in Table I.
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human/snail infection rates lead to remarkable quantitative

differences in the mean parasite burden of human hosts.

Including a non-vanishing parasite-induced mortality in the

human host may change the quantitative behavior of the

model, but for realistic values of this mortality the temporal

patterns remain qualitatively unchanged.

We have also investigated the effect of seasonal fluctua-

tions of snail demography, which is strongly dependent on

environmental conditions. Results suggest that environmen-

tal variability has an important role in generating the disease

dynamical patterns over time. Wide intra-annual fluctua-

tions can lead to sub-harmonic oscillations and chaotic

behaviors. Bifurcation analysis and numerical simulations

thus show that the basic mechanisms included in our model

are able to reproduce behaviors also found in real data,

including periodic, quasi-periodic, and chaotic dynamics.

This makes our model a useful tool to better investigate

the impact of anthropic and environmental changes on the

severity and prevalence of schistosomiasis. Although our

approach is largely theoretical, the intermediate complexity

of our model makes it also a promising building brick

towards a realistic framework for the study not only of tem-

poral but also of spatial patterns of schistosomiasis dynam-

ics. This model could be the basis for the development of a

new spatially explicit modeling framework, accounting,

e.g., for both human mobility and geographical interconnec-

tions between snail populations through hydrological

networks.40,41
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APPENDIX A: TRANSCRITICAL BIFURCATION CURVE

From the linearization of system (7), we can write the

Jacobian matrix J

J ¼

�lH � lP 0 0 brH

�v�S
f ð �P; �S; �E; �IÞ
��c�S

��c�S ��c�S

v�S v �P �lS� dS� d 0

0 0 d �lS� dS

2
6666666664

3
7777777775
;

(A1)

where a superscript bar indicates state variables at equilib-

rium and f ð �P; �S; �E; �IÞ is given by

f ð �P; �S; �E; �IÞ ¼ �½1� cð�S þ �E þ �IÞ� � lS � v �P: (A2)

Evaluating J at the disease free equilibrium X0, we

derive that one eigenvalue is k1 ¼ lS � �, that is always neg-

ative; the other three solve the equation

FIG. 7. Strange attractors of model (7). (a) State reconstruction of the mean worm burden and infected snails, (b) peak-to-peak map, and (c) power spectrum of

the mean worm burden time series for the strange attractor originated via cascade of period-doubling bifurcations (point (i) of Fig. 6; � ¼ 0:2; �0 ¼ 0:6/day).

(d)–(e)–(f) As in (a)–(b)–(c) for the strange attractor originated via torus breakdown (point (ii) of Fig. 6; � ¼ 0:035; �0 ¼ 0:15/day). Time-varying model’s

behaviors are investigated for b ¼ 10�5 and v ¼ 10�5. All other parameters as in Table I.
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det

kþ lH þ lP 0 �brH

�vS0 kþ lS þ dS þ d 0

0 �d kþ lS þ dS

2
6666666664

3
7777777775

¼ kþ lH þ lPð Þ kþ lS þ dS þ dð Þ kþ lS þ dSð Þ

�vbrHd
� � lS

�c
¼ 0; (A3)

which reads

f ðkÞ ¼ a0k
3 þ a1k

2 þ a2kþ a3 ¼ 0; (A4)

with

a0 ¼ 1; (A5)

a1 ¼ 2lS þ 2dS þ dþ lH þ lP; (A6)

a2 ¼ ðlH þ lPÞð2lS þ 2dS þ dÞ þ ðlS þ dS þ dÞðlS þ dSÞ;
(A7)

a3¼ lHþlPð Þ lSþdSþdð Þ lSþdSð Þ�vbrHd
��lS

�c
: (A8)

Since a0, a1, and a2 are always positive, the changes of

sign between consecutive nonzero coefficients ai are at most

1 if a3< 0. In that case, there is one positive eigenvalue.

Note that the coefficients of

f ð�kÞ ¼ �a0k
3 þ a1k

2 � a2kþ a3 ¼ 0 (A9)

do change sign either twice or three times if a3< 0 or a3> 0,

respectively. By Descartes’ rule of signs, there are at most

two or three negative eigenvalues for J(X0). Oscillations

around X0 are not possible because of the positivity of the sys-

tem, thus no complex roots are expected for f(k). We can con-

clude that the condition a3< 0 is the stability condition of the

disease-free equilibrium. Since a3< 0 is also the condition for

the positivity of the endemic equilibrium Xþ (see Eq. (9)), we

obtain Eq. (10) for the transcritical bifurcation curve.

APPENDIX B: HOPF BIFURCATION CURVE

We evaluate the Jacobian matrix (A1) at Xþ and write

the characteristic matrix

kI�JðXþÞ

¼

kþlHþlP 0 0 �brH

vSþ kþ�cSþ �cSþ �cSþ

�vSþ �vPþ kþlSþdSþd 0

0 0 �d kþlSþdS

2
666666666664

3
777777777775
:

(B1)

Therefore, the characteristic equation detðkI � JðXþÞÞ
¼ 0 is a fourth order polynomial equation of the form

f ðkÞ ¼ k4 þ b1k
3 þ b2k

2 þ b3kþ b4 ¼ 0; (B2)

where

b1 ¼ lH þ lP þ 2lS þ 2dS þ dþ �cSþ; (B3)

b2 ¼ �cSþð2lSþ 2dSþ dþ vPþÞþ ðlSþ dSþ dÞ
� ðlSþ dSÞþ ðlHþlPÞð�cSþ þ 2lSþ 2dSþ dÞ; (B4)

b3 ¼ �cSþ½ðlS þ dS þ dÞðlS þ dSÞ þ vPþðdþ lS þ dS

þ lH þ lPÞ� þ ðlH þ lPÞ½�cSþð2lS þ 2dS þ dÞ
þðlS þ dS þ dÞðlS þ dSÞ� � brHvdSþ; (B5)

b4 ¼ðlH þ lPÞf�cSþ½ðlS þ dS þ dÞðlS þ dSÞ þ vdPþ

þðlS þ dSÞvPþ�g þ brHdvSþðvPþ � �cSþÞ: (B6)

To analyze the stability of the endemic equilibrium Xþ
we construct the Routh-Hurwitz table

1 b2 b4

b1 b3 0

� 1

b1

b3 � b1b2Þð � 1

b1

�b1b4Þð 0

� b1

b1b2 � b3

b1b4 � b3

b1b2 � b3

b1

� �
0 0

According to the Routh-Hurwitz criterion, the equilib-

rium is stable iff

b1 > 0;

b1b2 > b3;

b1b2b3 < b2
1b4 þ b2

3:

8><
>: (B7)

As the first condition is verified as long as Xþ is feasible,

the conditions for a supercritical Hopf bifurcation of Xþ to

occur are

b1b2 > b3;

b1b2b3 ¼ b2
1b4 þ b2

3:

(
(B8)

In fact, for these parameter values the Jacobian matrix

J(Xþ) would have a pair of purely imaginary eigenvalues

(see Ref. 42).
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