10 research outputs found

    Investigation of continuously traversing microphone system for mode measurement

    Get PDF
    The continuously Traversing Microphone System consists of a data acquisition and processing method for obtaining the modal coefficients of the discrete, coherent acoustic field in a fan inlet duct. The system would be used in fan rigs or full scale engine installations where present measurement methods, because of the excessive number of microphones and long test times required, are not feasible. The purpose of the investigation reported here was to develop a method for defining modal structure by means of a continuously traversing microphone system and to perform an evaluation of the method, based upon analytical studies and computer simulated tests. A variety of system parameters were examined, and the effects of deviations from ideal were explored. Effects of traverse speed, digitizing rate, run time, roundoff error, calibration errors, and random noise background level were determined. For constant fan operating speed, the sensitivity of the method to normal errors and deviations was determined to be acceptable. Good recovery of mode coefficients was attainable. Fluctuating fan speed conditions received special attention, and it was concluded that by employing suitable time delay procedures, satisfactory information on mode coefficients can be obtained under realistic conditions. A plan for further development involving fan rig tests was prepared

    Method for extracting forward acoustic wave components from rotating microphone measurements in the inlets of turbofan engines

    Get PDF
    This report describes a procedure for enhancing the use of the basic rotating microphone system so as to determine the forward propagating mode components of the acoustic field in the inlet duct at the microphone plane in order to predict more accurate far-field radiation patterns. In addition, a modification was developed to obtain, from the same microphone readings, the forward acoustic modes generated at the fan face, which is generally some distance downstream of the microphone plane. Both these procedures employ computer-simulated calibrations of sound propagation in the inlet duct, based upon the current radiation code. These enhancement procedures were applied to previously obtained rotating microphone data for the 17-inch ADP fan. The forward mode components at the microphone plane were obtained and were used to compute corresponding far-field directivities. The second main task of the program involved finding the forward wave modes generated at the fan face in terms of the same total radial mode structure measured at the microphone plane. To obtain satisfactory results with the ADP geometry it was necessary to limit consideration to the propagating modes. Sensitivity studies were also conducted to establish guidelines for use in other fan configurations
    corecore