10 research outputs found

    The historical development and basis of human factors guidelines for automated systems in aeronautical operations

    Get PDF
    In order to derive general design guidelines for automated systems a study was conducted on the utilization and acceptance of existing automated systems as currently employed in several commercial fields. Four principal study area were investigated by means of structured interviews, and in some cases questionnaires. The study areas were aviation, a both scheduled airline and general commercial aviation; process control and factory applications; office automation; and automation in the power industry. The results of over eighty structured interviews were analyzed and responses categoried as various human factors issues for use by both designers and users of automated equipment. These guidelines address such items as general physical features of automated equipment; personnel orientation, acceptance, and training; and both personnel and system reliability

    Standard Flaws for Eddy Current Probe Characterization

    Get PDF
    Calibration procedures for eddy current inspections often involve the use of artifact standards containing manufactured flaws. The manufactured flaw is assumed to be a good approximation of the type of flaw being sought during the inspection. These manufactured flaws are most often produced by electrical discharge machining (EDM), milling, or the controlled growth of fatigue cracks. With simple amplitude display inspection equipment this type of artifact is usually sufficient, but as more sophisticated inspection equipment is developed some drawbacks to the commonly accepted practice are becoming evident. Instruments that are sensitive to eddy current signal phase as well as amplitude can show considerable differences in phase between a relatively wide EDM notch or milled slot and a real fatigue crack [1]. The use of controlled growth fatigue cracks can also cause problems when forces at the crack’s tip drive the crack faces together, making electrical contact [2], In addition, estimates of crack depth will always be estimates until the crack is broken apart. We describe here a technique for consistently producing well characterized discontinuities in aluminum which are not subject to these problems

    Standard Flaws for Eddy Current Probe Characterization

    No full text
    Calibration procedures for eddy current inspections often involve the use of artifact standards containing manufactured flaws. The manufactured flaw is assumed to be a good approximation of the type of flaw being sought during the inspection. These manufactured flaws are most often produced by electrical discharge machining (EDM), milling, or the controlled growth of fatigue cracks. With simple amplitude display inspection equipment this type of artifact is usually sufficient, but as more sophisticated inspection equipment is developed some drawbacks to the commonly accepted practice are becoming evident. Instruments that are sensitive to eddy current signal phase as well as amplitude can show considerable differences in phase between a relatively wide EDM notch or milled slot and a real fatigue crack [1]. The use of controlled growth fatigue cracks can also cause problems when forces at the crack’s tip drive the crack faces together, making electrical contact [2], In addition, estimates of crack depth will always be estimates until the crack is broken apart. We describe here a technique for consistently producing well characterized discontinuities in aluminum which are not subject to these problems.</p

    A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere

    Get PDF
    The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H<sub>2</sub>O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February–March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1&sigma;) of better than 0.17 parts per million (ppm, 10<sup>&minus;6</sup> mol mol<sup>−1</sup>), with an overall H<sub>2</sub>O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2&sigma;) was 0.023–0.013 ppm, corresponding to approximately 2 μg m<sup>−3</sup>, with an estimated overall uncertainty of 20%

    A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere

    No full text
    The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February–March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1&sigma;) of better than 0.17 parts per million (ppm, 10&minus;6 mol mol−1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2&sigma;) was 0.023–0.013 ppm, corresponding to approximately 2 μg m−3, with an estimated overall uncertainty of 20%

    A Laser-Induced Fluorescence Instrument for Aircraft Measurements of Sulfur Dioxide in the Upper Troposphere and Lower Stratosphere

    No full text
    This work describes the development and testing of a new instrument for in situ measurements of sulfur dioxide (SO2) on airborne platforms in the upper troposphere and lower stratosphere (UTLS). The instrument is based on the laser-induced fluorescence technique and uses the fifth harmonic of a tunable fiber-amplified semiconductor diode laser system at 1084.5 nm to excite SO2 at 216.9 nm. Sensitivity and background checks are achieved in flight by additions of SO2 calibration gas and zero air, respectively. Aircraft demonstration was performed during the NASA Volcano Plume Investigation Readiness and Gas-Phase and Aerosol Sulfur (VIRGAS) experiment, which was a series of flights using the NASA WB-57F during October 2015 based at Ellington Field and Harlingen, Texas. During these flights, the instrument successfully measured SO2 in the UTLS at background (non-volcanic) conditions with a precision of 2 ppt at 10 s and an overall uncertainty determined primarily by instrument drifts of +/- (16% + 0.9 ppt)

    A Lightweight Remote Sensing Payload for Wildfire Detection and Fire Radiative Power Measurements

    No full text
    Small uncrewed aerial systems (sUASs) have the potential to serve as ideal platforms for high spatial and temporal resolution wildfire measurements to complement aircraft and satellite observations, but typically have very limited payload capacity. Recognizing the need for improved data from wildfire management and smoke forecasting communities and the potential advantages of sUAS platforms, the Nighttime Fire Observations eXperiment (NightFOX) project was funded by the US National Oceanic and Atmospheric Administration (NOAA) to develop a suite of miniaturized, relatively low-cost scientific instruments for wildfire-related measurements that would satisfy the size, weight and power constraints of a sUAS payload. Here we report on a remote sensing system developed under the NightFOX project that consists of three optical instruments with five individual sensors for wildfire mapping and fire radiative power measurement and a GPS-aided inertial navigation system module for aircraft position and attitude determination. The first instrument consists of two scanning telescopes with infrared (IR) channels using narrow wavelength bands near 1.6 and 4 µm to make fire radiative power measurements with a blackbody equivalent temperature range of 320–1500 °C. The second instrument is a broadband shortwave (0.95–1.7 µm) IR imager for high spatial resolution fire mapping. Both instruments are custom built. The third instrument is a commercial off-the-shelf visible/thermal IR dual camera. The entire system weighs about 1500 g and consumes approximately 15 W of power. The system has been successfully operated for fire observations using a Black Swift Technologies S2 small, fixed-wing UAS for flights over a prescribed grassland burn in Colorado and onboard an NOAA Twin Otter crewed aircraft over several western US wildfires during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field mission
    corecore