6 research outputs found

    Novel detection methods for radiation-induced electron-hole pairs.

    Get PDF
    Most common ionizing radiation detectors typically rely on one of two general methods: collection of charge generated by the radiation, or collection of light produced by recombination of excited species. Substantial efforts have been made to improve the performance of materials used in these types of detectors, e.g. to raise the operating temperature, to improve the energy resolution, timing or tracking ability. However, regardless of the material used, all these detectors are limited in performance by statistical variation in the collection efficiency, for charge or photons. We examine three alternative schemes for detecting ionizing radiation that do not rely on traditional direct collection of the carriers or photons produced by the radiation. The first method detects refractive index changes in a resonator structure. The second looks at alternative means to sense the chemical changes caused by radiation on a scintillator-type material. The final method examines the possibilities of sensing the perturbation caused by radiation on the transmission of a RF transmission line structure. Aspects of the feasibility of each approach are examined and recommendations made for further work

    THz transceiver characterization : LDRD project 139363 final report.

    No full text
    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project
    corecore