116 research outputs found

    Extraction of an Entanglement by Repetition of the Resonant Transmission of an Ancilla Qubit

    Full text link
    A scheme for the extraction of entanglement in two noninteracting qubits (spins) is proposed. The idea is to make use of resonant transmission of ancilla qubit through the two fixed qubits, controlled by the entanglement in the scatterers. Repetition of the resonant transmission extracts the singlet state in the target qubits from their arbitrary given state. Neither the preparation nor the post-selection of the ancilla spin is required, in contrast to the previously proposed schemes.Comment: 14 pages, 7 figure

    Hot-electron noise suppression in n-Si via the Hall effect

    Full text link
    We investigate how hot-electron fluctuations in n-type Si are affected by the presence of an intense (static) magnetic field in a Hall geometry. By using the Monte Carlo method, we find that the known Hall-effect-induced redistribution of electrons among valleys can suppress electron fluctuations with a simultaneous enhancement of the drift velocity

    Effect of Static Disorder in an Electron Fabry-Perot Interferometer with Two Quantum Scattering Centers

    Full text link
    In a recent paper -- F. Ciccarello \emph{et al.}, New J. Phys. \textbf{8}, 214 (2006) -- we have demonstrated that the electron transmission properties of a one-dimensional (1D) wire with two identical embedded spin-1/2 impurities can be significantly affected by entanglement between the spins of the scattering centers. Such effect is of particular interest in the control of transmission of quantum information in nanostructures and can be used as a detection scheme of maximally entangled states of two localized spins. In this letter, we relax the constraint that the two magnetic impurities are equal and investigate how the main results presented in the above paper are affected by a static disorder in the exchange coupling constants of the impurities. Good robustness against deviation from impurity symmetry is found for both the entanglement dependent transmission and the maximally entangled states generation scheme.Comment: 4 pages, 5 figure

    On demand entanglement in double quantum dots via coherent carrier scattering

    Get PDF
    We show how two qubits encoded in the orbital states of two quantum dots can be entangled or disentangled in a controlled way through their interaction with a weak electron current. The transmission/reflection spectrum of each scattered electron, acting as an entanglement mediator between the dots, shows a signature of the dot-dot entangled state. Strikingly, while few scattered carriers produce decoherence of the whole two-dots system, a larger number of electrons injected from one lead with proper energy is able to recover its quantum coherence. Our numerical simulations are based on a real-space solution of the three-particle Schroedinger equation with open boundaries. The computed transmission amplitudes are inserted in the analytical expression of the system density matrix in order to evaluate the entanglement.Comment: 20 pages, 5 figure

    Selective writing and read-out of a register of static qubits

    Get PDF
    We propose a setup comprising an arbitrarily large array of static qubits (SQs), which interact with a flying qubit (FQ). The SQs work as a quantum register, which can be written or read-out by means of the FQ through quantum state transfer (QST). The entire system, including the FQ's motional degrees of freedom, behaves quantum mechanically. We demonstrate a strategy allowing for selective QST between the FQ and a single SQ chosen from the register. This is achieved through a perfect mirror located beyond the SQs and suitable modulation of the inter-SQ distances.Comment: 14 pages, 4 figure

    Photon localization versus population trapping in a coupled-cavity array

    Get PDF
    We consider a coupled-cavity array (CCA), where one cavity interacts with a two-level atom under the rotating-wave approximation. We investigate the excitation transport dynamics across the array, which arises in the atom's emission process into the CCA vacuum. Due to the known formation of atom-photon bound states, partial field localization and atomic population trapping in general take place. We study the functional dependence on the coupling strength of these two phenomena and show that the threshold values beyond which they become significant are different. As the coupling strength grows from zero, field localization is exhibited first

    Landauer's principle in multipartite open quantum system dynamics

    Get PDF
    We investigate the link between information and thermodynamics embodied by Landauer's principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer's principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {\it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.Comment: 5 pages, 3 figures, RevTeX4-1; Accepted for publication in Phys. Rev. Let

    Electron Fabry-Perot interferometer with two entangled magnetic impurities

    Get PDF
    We consider a one-dimensional (1D) wire along which single conduction electrons can propagate in the presence of two spin-1/2 magnetic impurities. The electron may be scattered by each impurity via a contact-exchange interaction and thus a spin-flip generally occurs at each scattering event. Adopting a quantum waveguide theory approach, we derive the stationary states of the system at all orders in the electron-impurity exchange coupling constant. This allows us to investigate electron transmission for arbitrary initial states of the two impurity spins. We show that for suitable electron wave vectors, the triplet and singlet maximally entangled spin states of the impurities can respectively largely inhibit the electron transport or make the wire completely transparent for any electron spin state. In the latter case, a resonance condition can always be found, representing an anomalous behaviour compared to typical decoherence induced by magnetic impurities. We provide an explanation for these phenomena in terms of the Hamiltonian symmetries. Finally, a scheme to generate maximally entangled spin states of the two impurities via electron scattering is proposed.Comment: 19 page

    Quantum non-Markovianity induced by Anderson localization

    Get PDF
    As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath

    Non-Markovian dynamics from band edge effects and static disorder

    Get PDF
    It was recently shown [S. Lorenzo, F. Lombardo, F. Ciccarello and M. Palma, Sci. Rep. 7 (2017) 42729] that the presence of static disorder in a bosonic bath \ue2\u80\u94 whose normal modes thus become all Anderson-localized \ue2\u80\u94 leads to non-Markovianity in the emission of an atom weakly coupled to it (a process which in absence of disorder is fully Markovian). Here, we extend the above analysis beyond the weak-coupling regime for a finite-band bath so as to account for band edge effects. We study the interplay of these with static disorder in the emergence of non-Markovian behavior in terms of a suitable non-Markovianity measure
    corecore