87 research outputs found

    Biomarkers of HIV-1 associated dementia: proteomic investigation of sera

    Get PDF
    Background: New, more sensitive and specific biomarkers are needed to support other means of clinical diagnosis of neurodegenerative disorders. Proteomics technology is widely used in discovering new biomarkers. There are several difficulties with in-depth analysis of human plasma/ serum, including that there is no one proteomic platform that can offer complete identification of differences in proteomic profiles. Another set of problems is associated with heterogeneity of human samples in addition intrinsic variability associated with every step of proteomic investigation. Validation is the very last step of proteomic investigation and it is very often difficult to validate potential biomarker with desired sensitivity and specificity. Even though it may be possible to validate a differentially expressed protein, it may not necessarily prove to be a valid diagnostic biomarker. Results: In the current study we report results of proteomic analysis of sera from HIV-infected individuals with or without cognitive impairment. Application of SELDI-TOF analysis followed by weak cation exchange chromatography and 1-dimensional electrophoresis led to discovery of gelsolin and prealbumin as differentially expressed proteins which were not detected in this cohort of samples when previously investigated by 2-dimensional electrophoresis with Difference Gel Electrophoresis technology. Conclusion: Validation using western-blot analysis led us to conclude that relative change of the levels of these proteins in one patient during a timeframe might be more informative, sensitive and specific than application of average level estimated based on an even larger cohort of patients

    Immunoreactivity of anti-gelsolin antibodies: implications for biomarker validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteomic-based discovery of biomarkers for disease has recently come under scrutiny for a variety of issues; one prominent issue is the lack of orthogonal validation for biomarkers following discovery. Validation by ELISA or Western blot requires the use of antibodies, which for many potential biomarkers are under-characterized and may lead to misleading or inconclusive results. Gelsolin is one such biomarker candidate in HIV-associated neurocognitive disorders.</p> <p>Methods</p> <p>Samples from human (plasma and CSF), monkey (plasma), monocyte-derived macrophage (supernatants), and commercial gelsolin (recombinant and purified) were quantitated using Western blot assay and a variety of anti-gelsolin antibodies. Plasma and CSF was used for immunoaffinity purification of gelsolin which was identified in eight bands by tandem mass spectrometry.</p> <p>Results</p> <p>Immunoreactivity of gelsolin within samples and between antibodies varied greatly. In several instances, multiple bands were identified (corresponding to different gelsolin forms) by one antibody, but not identified by another. Moreover, in some instances immunoreactivity depended on the source of gelsolin, e.g. plasma or CSF. Additionally, some smaller forms of gelsolin were identified by mass spectrometry but not by any antibody. Recombinant gelsolin was used as reference sample.</p> <p>Conclusions</p> <p>Orthogonal validation using specific monoclonal or polyclonal antibodies may reject biomarker candidates from further studies based on misleading or even false quantitation of those proteins, which circulate in various forms in body fluids.</p

    Opposing regulation of endolysosomal pathways by long-acting nanoformulated antiretroviral therapy and HIV-1 in human macrophages.

    Get PDF
    BACKGROUND: Long-acting nanoformulated antiretroviral therapy (nanoART) is designed to improve patient regimen adherence, reduce systemic drug toxicities, and facilitate clearance of human immunodeficiency virus type one (HIV-1) infection. While nanoART establishes drug depots within recycling and late monocyte-macrophage endosomes, whether or not this provides a strategic advantage towards viral elimination has not been elucidated. RESULTS: We applied quantitative SWATH-MS proteomics and cell profiling to nanoparticle atazanavir (nanoATV)-treated and HIV-1 infected human monocyte-derived macrophages (MDM). Native ATV and uninfected cells served as controls. Both HIV-1 and nanoATV engaged endolysosomal trafficking for assembly and depot formation, respectively. Notably, the pathways were deregulated in opposing manners by the virus and the nanoATV, likely by viral clearance. Paired-sample z-scores, of the proteomic data sets, showed up- and down- regulation of Rab-linked endolysosomal proteins. NanoART and native ATV treated uninfected cells showed limited effects. The data was confirmed by Western blot. DAVID and KEGG bioinformatics analyses of proteomic data showed relationships between secretory, mobility and phagocytic cell functions and virus and particle trafficking. CONCLUSIONS: We posit that modulation of endolysosomal pathways by antiretroviral nanoparticles provides a strategic path to combat HIV infection

    Opposing regulation of endolysosomal pathways by long-acting nanoformulated antiretroviral therapy and HIV-1 in human macrophages.

    Get PDF
    BACKGROUND: Long-acting nanoformulated antiretroviral therapy (nanoART) is designed to improve patient regimen adherence, reduce systemic drug toxicities, and facilitate clearance of human immunodeficiency virus type one (HIV-1) infection. While nanoART establishes drug depots within recycling and late monocyte-macrophage endosomes, whether or not this provides a strategic advantage towards viral elimination has not been elucidated. RESULTS: We applied quantitative SWATH-MS proteomics and cell profiling to nanoparticle atazanavir (nanoATV)-treated and HIV-1 infected human monocyte-derived macrophages (MDM). Native ATV and uninfected cells served as controls. Both HIV-1 and nanoATV engaged endolysosomal trafficking for assembly and depot formation, respectively. Notably, the pathways were deregulated in opposing manners by the virus and the nanoATV, likely by viral clearance. Paired-sample z-scores, of the proteomic data sets, showed up- and down- regulation of Rab-linked endolysosomal proteins. NanoART and native ATV treated uninfected cells showed limited effects. The data was confirmed by Western blot. DAVID and KEGG bioinformatics analyses of proteomic data showed relationships between secretory, mobility and phagocytic cell functions and virus and particle trafficking. CONCLUSIONS: We posit that modulation of endolysosomal pathways by antiretroviral nanoparticles provides a strategic path to combat HIV infection

    Effect of Milk on Fibronectin and Collagen Type I Binding to \u3ci\u3eStaphylococcus aureus\u3c/i\u3e and Coagulase-Negative Staphylococci Isolated from Bovine Mastitis

    Get PDF
    Tryptic soy broth (TSB)-grown cells of Staphylococcus aureus isolated from acute and chronic bovine mastitis bound mainly 125I-fibronectin (125I-Fn), whereas strains of nine species of coagulase-negative staphylococci showed a predominant interaction with 125I-collagen (125I-Cn) type I. A particle agglutination assay (PAA) was used to examine the interaction of coagulase-negative staphylococci with 1251-Fn and 125I-Cn immobilized on latex. All 368 coagulase-negative staphylococci demonstrated high 125I-Cn and moderate to low 125I-Fn interactions in the PAA. Cn-PAA reactivity was high among strains of Staphylococcus xylosus (84.2%), Staphylococcus simulans (77.8%), Staphylococcus epidermidis (76.7%), and Staphylococcus hyicus (74.3%), whereas all six Staphylococcus capitis strains clumped Cn-PAA reagent. Incubating TSB-grown cells in 10% skim milk for 1 h decreased the 125I-Fn- and 125I-Cn-binding affinity in most of the S. aureus and coagulase-negative staphylococci, while growth in 10% skim milk for 18 h resulted in more than 90% decrease or complete loss of interaction with these proteins. Decreased 1251-Fn binding in the presence of milk was correlated with protease production but not with 125I-Cn binding

    Effect of Milk on Fibronectin and Collagen Type I Binding to \u3ci\u3eStaphylococcus aureus\u3c/i\u3e and Coagulase-Negative Staphylococci Isolated from Bovine Mastitis

    Get PDF
    Tryptic soy broth (TSB)-grown cells of Staphylococcus aureus isolated from acute and chronic bovine mastitis bound mainly 125I-fibronectin (125I-Fn), whereas strains of nine species of coagulase-negative staphylococci showed a predominant interaction with 125I-collagen (125I-Cn) type I. A particle agglutination assay (PAA) was used to examine the interaction of coagulase-negative staphylococci with 1251-Fn and 125I-Cn immobilized on latex. All 368 coagulase-negative staphylococci demonstrated high 125I-Cn and moderate to low 125I-Fn interactions in the PAA. Cn-PAA reactivity was high among strains of Staphylococcus xylosus (84.2%), Staphylococcus simulans (77.8%), Staphylococcus epidermidis (76.7%), and Staphylococcus hyicus (74.3%), whereas all six Staphylococcus capitis strains clumped Cn-PAA reagent. Incubating TSB-grown cells in 10% skim milk for 1 h decreased the 125I-Fn- and 125I-Cn-binding affinity in most of the S. aureus and coagulase-negative staphylococci, while growth in 10% skim milk for 18 h resulted in more than 90% decrease or complete loss of interaction with these proteins. Decreased 1251-Fn binding in the presence of milk was correlated with protease production but not with 125I-Cn binding

    Multidimensional protein fractionation using ProteomeLab PF 2D™ for profiling amyotrophic lateral sclerosis immunity: A preliminary report

    Get PDF
    Background: The ProteomeLab™ PF 2D platform is a relatively new approach to global protein profiling. Herein, it was used for investigation of plasma proteome changes in amyotrophic lateral sclerosis (ALS) patients before and during immunization with glatiramer acetate (GA) in a clinical trial. Results: The experimental design included immunoaffinity depletion of 12 most abundant proteins from plasma samples with the ProteomeLab™ IgY-12 LC10 column kit as first dimension separation, also referred to as immuno-partitioning. Second and third dimension separations of the enriched proteome were performed on the PF 2D platform utilizing 2D isoelectric focusing and RP-HPLC with the resulting fractions collected for analysis. 1D gel electrophoresis was added as a fourth dimension when sufficient protein was available. Protein identification from collected fractions was performed using nano-LC-MS/MS approach. Analysis of differences in the resulting two-dimensional maps of fractions obtained from the PF 2D and the ability to identify proteins from these fractions allowed sensitivity threshold measurements. Masked proteins in the PF 2D fractions are discussed. Conclusion: We offer some insight into the strengths and limitations of this emerging proteomic platform

    Four Flats Poster

    Get PDF
    Poster for a Four Flats reunion concerts at Porland Civic Auditorium, Oregon. 1 page, black and white.https://digitalcommons.georgefox.edu/fourflats_papers/1014/thumbnail.jp

    Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus

    Get PDF
    The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci

    The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy.

    Get PDF
    During studies to extend the half-life of crystalline nanoformulated antiretroviral therapy (nanoART) the mixed lineage kinase-3 inhibitor URMC-099, developed as an adjunctive neuroprotective agent was shown to facilitate antiviral responses. Long-acting ritonavir-boosted atazanavir (nanoATV/r) nanoformulations co-administered with URMC-099 reduced viral load and the numbers of HIV-1 infected CD4+ T-cells in lymphoid tissues more than either drug alone in infected humanized NOD/SCID/IL2RÎłc-/- mice. The drug effects were associated with sustained ART depots. Proteomics analyses demonstrated that the antiretroviral responses were linked to affected phagolysosomal storage pathways leading to sequestration of nanoATV/r in Rab-associated recycling and late endosomes; sites associated with viral maturation. URMC-099 administered with nanoATV induced a dose-dependent reduction in HIV-1p24 and reverse transcriptase activity. This drug combination offers a unique chemical marriage for cell-based viral clearance. From the Clinical Editor: Although successful in combating HIV-1 infection, the next improvement in antiretroviral therapy (nanoART) would be to devise long acting therapy, such as intra-cellular depots. In this report, the authors described the use of nanoformulated antiretroviral therapy given together with the mixed lineage kinase-3 inhibitor URMC-099, and showed that this combination not only prolonged drug half-life, but also had better efficacy. The findings are hoped to be translated into the clinical setting in the future
    • …
    corecore