43 research outputs found

    Prostate cancer treated with brachytherapy; an exploratory study of dose-dependent biomarkers and quality of life

    Get PDF
    BACKGROUND: Low-dose-rate permanent prostate brachytherapy (PPB) is an attractive treatment option for patients with localised prostate cancer with excellent outcomes. As standard CT-based post-implant dosimetry often correlates poorly with late treatment-related toxicity, this exploratory (proof of concept) study was conducted to investigate correlations between radiation − induced DNA damage biomarker levels, and acute and late bowel, urinary, and sexual toxicity. METHODS: Twelve patients treated with (125)I PPB monotherapy (145Gy) for prostate cancer were included in this prospective study. Post-implant CT based dosimetry assessed the minimum dose encompassing 90% (D(90%)) of the whole prostate volume (global), sub-regions of the prostate (12 sectors) and the near maximum doses (D(0.1cc), D(2cc)) for the rectum and bladder. Six blood samples were collected from each patient; pre-treatment, 1 h (h), 4 h, 24 h post-implant, at 4 weeks (w) and at 3 months (m). DNA double strand breaks were investigated by staining the blood samples with immunofluorescence antibodies to γH2AX and 53BP1 proteins (γH2AX/53BP1). Patient self-scored quality of life from the Expanded Prostate Cancer Index Composite (EPIC) were obtained at baseline, 1 m, 3 m, 6 m, 9 m, 1 year (y), 2y and 3y post-treatment. Spearman’s correlation coefficients were used to evaluate correlations between temporal changes in γH2AX/53BP1, dose and toxicity. RESULTS: The minimum follow up was 2 years. Population mean prostate D(90%) was 144.6 ± 12.1 Gy and rectal near maximum dose D(0.1cc) = 153.0 ± 30.8 Gy and D(2cc) = 62.7 ± 12.1 Gy and for the bladder D(0.1cc) = 123.1 ± 27.0 Gy and D(2cc) = 70.9 ± 11.9 Gy. Changes in EPIC scores from baseline showed high positive correlation between acute toxicity and late toxicity for both urinary and bowel symptoms. Increased production of γH2AX/53BP1 at 24 h relative to baseline positively correlated with late bowel symptoms. Overall, no correlations were observed between dose metrics (prostate global or sector doses) and γH2AX/53BP1 foci counts. CONCLUSIONS: Our results show that a prompt increase in γH2AX/53BP1foci at 24 h post-implant relative to baseline may be a useful measure to assess elevated risk of late RT − related toxicities for PPB patients. A subsequent investigation recruiting a larger cohort of patients is warranted to verify our findings. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13014-017-0792-1) contains supplementary material, which is available to authorized users

    Standard-of-Care Treatment for HER2+ Metastatic Breast Cancer and Emerging Therapeutic Options

    No full text
    Prior to the advent of the HER2-targeted monoclonal antibody trastuzumab, HER2+ breast cancer (BC) was considered an aggressive disease with a poor prognosis. Over the past 25 years, innovations in molecular biology, pathology, and early therapeutics have transformed the treatment landscape. With the advent of multiple HER2-directed therapies, there have been immense improvements in oncological outcomes in both adjuvant and metastatic settings. Currently, 8 HER2-targeted therapies are approved by the Food and Drug Administration (FDA) for the treatment of early-stage and/or advanced/metastatic disease. Nonetheless, approximately 25% of patients develop recurrent disease or metastasis after HER2-targeted therapy and most patients with HER2+ metastatic breast cancer (MBC) die from their disease. Given the many mechanisms of resistance to HER2-directed therapy, there is a pressing need to further personalize care for patients with HER2+ MBC, by the identification of reliable predictive biomarkers, and the development of novel therapies and combination regimens to overcome therapeutic resistance. Of particular interest are established and novel antibody-drug conjugates, as well as other novel therapeutics and multifaceted approaches to harness the immune system (checkpoint inhibitors, bispecific antibodies, and vaccine therapy). Herein, we discuss standard-of-care treatment of HER2+ MBC, including the management of breast cancer brain metastases (BCBM). Furthermore, we highlight novel treatment approaches for HER2+ MBC, including endeavors to personalize therapy, and discuss ongoing controversies and challenges

    Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification

    No full text
    Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen β-conglutin was used to demonstrate the proof of concept. The aptamer was generated by using biotinylated dUTPs, and the affinity of the modified aptamer as compared to the unmodified aptamer was determined by using surface plasmon resonance to calculate the dissociation constant (KD), and no significant improvement in affinity due to the incorporation of the hydrophobic biotin was observed. The modified aptamer was then applied in a colorimetric competitive enzyme-linked oligonucleotide assay, where β-conglutin was immobilized on the wells of a microtiter plate, competing with β-conglutin free in solution for the binding to the aptamer. The limit of detection achieved was 68 pM, demonstrating an improvement in detection limit of three orders of magnitude as compared with the aptamer simply modified with a terminal biotin label. The concept was then exploited by using electrochemical detection and screen-printed electrodes where detection limits of 326 fM and 7.89 fM were obtained with carbon and gold electrodes, respectively. The assay format is generic in nature and can be applied to all aptamers, facilitating an easy and cost-effective means to achieve lower detection limits

    A Label-Free Gold Nanoparticles-Based Optical Aptasensor for the Detection of Retinol Binding Protein 4

    No full text
    Retinol-binding protein 4 (RBP4) has been implicated in insulin resistance in rodents and humans with obesity and T2DM, making it a potential biomarker for the early diagnosis of T2DM. However, diagnostic tools for low-level detection of RBP4 are still lagging behind. Therefore, there is an urgent need for the development of T2DM diagnostics that are rapid, cost-effective and that can be used at the point-of-care (POC). Recently, nano-enabled biosensors integrating highly selective optical detection techniques and specificity of aptamers have been widely developed for the rapid detection of various targets. This study reports on the development of a rapid gold nanoparticles (AuNPs)-based aptasensor for the detection of RBP4. The retinol-binding protein aptamer (RBP-A) is adsorbed on the surface of the AuNPs through van der Waals and hydrophobic interactions, stabilizing the AuNPs against sodium chloride (NaCl)-induced aggregation. Upon the addition of RBP4, the RBP-A binds to RBP4 and detaches from the surface of the AuNPs, leaving the AuNPs unprotected. Addition of NaCl causes aggregation of AuNPs, leading to a visible colour change of the AuNPs solution from ruby red to purple/blue. The test result was available within 5 min and the assay had a limit of detection of 90.76 ± 2.81 nM. This study demonstrates the successful development of a simple yet effective, specific, and colorimetric rapid assay for RBP4 detection

    Functional Detection of Proteins by Caged Aptamers

    No full text
    While many diagnostic assay platforms enable the measurement of analytes with high sensitivity, most of them result in a disruption of the analyte’s native structure and, thus, in loss of function. Consequently, the analyte can be used neither for further analytical assessment nor functional analysis. Herein we report the use of caged aptamers as templates during apta-PCR analysis of targets. Aptamers are short nucleic acids that fold into a well-defined three-dimensional structure in which they interact with target molecules with high affinity and specificity. Nucleic acid aptamers can also serve as templates for qPCR approaches and, thus, have been used as high affinity ligands to bind to target molecules and subsequently for quantification by qPCR, an assay format coined apta-PCR. Caged aptamers in turn refer to variants that bear one or more photolabile groups at strategic positions. The activity of caged aptamers can thus be turned on or off by light irradiation. The latter allows the mild elution of target-bound aptamers while the target’s native structure and function remain intact. We demonstrate that this approach allows the quantitative and subsequently the functional assessment of analytes. Since caged aptamers can be generated emanating from virtually every available aptamer, the described approach can be generalized and adopted to any target–aptamer pair and, thus, have a broad applicability in proteomics and clinical diagnostics
    corecore