1,047 research outputs found
f(R) cosmology with torsion
f(R)-gravity with geometric torsion (not related to any spin fluid) is
considered in a cosmological context. We derive the field equations in vacuum
and in presence of perfect-fluid matter and discuss the related cosmological
models. Torsion vanishes in vacuum for almost all arbitrary functions f(R)
leading to standard General Relativity. Only for f(R)=R^{2}, torsion gives
contribution in the vacuum leading to an accelerated behavior . When material
sources are considered, we find that the torsion tensor is different from zero
even with spinless material sources. This tensor is related to the logarithmic
derivative of f'(R), which can be expressed also as a nonlinear function of the
trace of the matter energy-momentum tensor. We show that the resulting
equations for the metric can always be arranged to yield effective Einstein
equations. When the homogeneous and isotropic cosmological models are
considered, terms originated by torsion can lead to accelerated expansion. This
means that, in f(R) gravity, torsion can be a geometric source for
acceleration.Comment: 13 page
Invariance of Structure in an Aging Colloidal Glass
We study concentrated colloidal suspensions, a model system which has a glass
transition. The non-equilibrium nature of the glassy state is most clearly
highlighted by aging -- the dependence of the system's properties on the time
elapsed since vitrification. Fast laser scanning confocal microscopy allows us
to image a colloidal glass and track the particles in three dimensions. We
analyze the static structure in terms of tetrahedral packing. We find that
while the aging of the suspension clearly affects its dynamics, none of the
geometrical quantities associated with tetrahedra change with age.Comment: Submitted to the proceedings of "The 3rd International Workshop on
Complex Systems" in Sendai, Japa
Simulations of aging and plastic deformation in polymer glasses
We study the effect of physical aging on the mechanical properties of a model
polymer glass using molecular dynamics simulations. The creep compliance is
determined simultaneously with the structural relaxation under a constant
uniaxial load below yield at constant temperature. The model successfully
captures universal features found experimentally in polymer glasses, including
signatures of mechanical rejuvenation. We analyze microscopic relaxation
timescales and show that they exhibit the same aging characteristics as the
macroscopic creep compliance. In addition, our model indicates that the entire
distribution of relaxation times scales identically with age. Despite large
changes in mobility, we observe comparatively little structural change except
for a weak logarithmic increase in the degree of short-range order that may be
correlated to an observed decrease in aging with increasing load.Comment: 9 pages, 12 figure
Non-Gaussian fluctuations in stochastic models with absorbing barriers
The dynamics of a one-dimensional stochastic model is studied in presence of
an absorbing boundary. The distribution of fluctuations is analytically
characterized within the generalized van Kampen expansion, accounting for
higher order corrections beyond the conventional Gaussian approximation. The
theory is shown to successfully capture the non Gaussian traits of the sought
distribution returning an excellent agreement with the simulations, for {\it
all times} and arbitrarily {\it close} to the absorbing barrier. At large
times, a compact analytical solution for the distribution of fluctuations is
also obtained, bridging the gap with previous investigations, within the van
Kampen picture and without resorting to alternative strategies, as elsewhere
hypothesized.Comment: 2 figures, submitted to Phys. Rev. Let
Dynamics and structure of an aging binary colloidal glass
We study aging in a colloidal suspension consisting of micron-sized particles
in a liquid. This system is made glassy by increasing the particle
concentration. We observe samples composed of particles of two sizes, with a
size ratio of 1:2.1 and a volume fraction ratio 1:6, using fast laser scanning
confocal microscopy. This technique yields real-time, three-dimensional movies
deep inside the colloidal glass. Specifically, we look at how the size, motion
and structural organization of the particles relate to the overall aging of the
glass. Particles move in spatially heterogeneous cooperative groups. These
mobile regions tend to be richer in small particles, and these small particles
facilitate the motion of nearby particles of both sizes.Comment: 7 pages; submitted to Phys. Rev. E. Revised with 1 new figure,
improved tex
A clinical pilot study on the effect of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 strain in women with vaginal dysbiosis
Lactobacilli with probiotic features play an essential role in maintaining a balanced vaginal microbiota and their administration has been suggested for the treatment and prevention of vaginal dysbiosis. The present study was aimed to in vitro and in vivo investigate the probiotic potential of the Lacticaseibacillus rhamnosus TOM 22.8 strain, isolated from the vaginal ecosystem of a healthy woman. For this purpose, safety and functional properties were in depth evaluated. The strain exhibited a broad spectrum of antagonistic activity against vaginal pathogens; adhesion capacity to both the vaginal VK2/E6E7 and the intestinal Caco-2 cells; anti-inflammatory and antioxidant activities, suggesting its promising probiotic features. In addition, an in vivo pilot-study was planned. Based on both clinical and microbiological parameters, the oral or vaginal strain administration, determined a significant pathogens reduction after 10 days of administration and a maintenance of eubiosis up to 30 days after the end of the treatment. Therefore, the L. rhamnosus TOM 22.8 strain can be proposed as valuable oral and/or vaginal treatment for vaginal dysbiosis
Analytical study of non Gaussian fluctuations in a stochastic scheme of autocatalytic reactions
A stochastic model of autocatalytic chemical reactions is studied both
numerically and analytically. The van Kampen perturbative scheme is
implemented, beyond the second order approximation, so to capture the non
Gaussianity traits as displayed by the simulations. The method is targeted to
the characterization of the third moments of the distribution of fluctuations,
originating from a system of four populations in mutual interaction. The theory
predictions agree well with the simulations, pointing to the validity of the
van Kampen expansion beyond the conventional Gaussian solution.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Current surgical concepts and indications in the management of the short bowel state: A call for the use of multidisciplinary intestinal rehabilitation programs
The mainstay of management for short bowel syndrome (SBS) is to promote access to the best quality of care provided by the intestinal rehabilitation program (IRP) in specialized centres. When treating SBS patients, the main goal is to minimize disease-associated complications, as well as achieve enteral autonomy. Surgical strategies should be selected cautiously upon the actual state of the bowel with respect to what it is clinically relevant for that specific patient. To this aim, a personalized and multidisciplinary approach for such a complex syndrome is needed
Correlations of Structure and Dynamics in an Aging Colloidal Glass
We study concentrated colloidal suspensions, a model system which has a glass
transition. Samples in the glassy state show aging, in that the motion of the
colloidal particles slows as the sample ages from an initial state. We study
the relationship between the static structure and the slowing dynamics, using
confocal microscopy to follow the three-dimensional motion of the particles.
The structure is quantified by considering tetrahedra formed by quadruplets of
neighboring particles. We find that while the sample clearly slows down during
aging, the static properties as measured by tetrahedral quantities do not vary.
However, a weak correlation between tetrahedron shape and mobility is observed,
suggesting that the structure facilitates the motion responsible for the sample
aging.Comment: Submitted to Solid State Communication
- …