3 research outputs found

    Ethnobotany of biofencing among teagarden and ex-teagarden communities of Nagaon district of Assam

    No full text
    666-668Raising plants as live fencing in home gardens is a traditional practice among the tea garden communities. An ethnobotanical study was carried out in order to document the indigenous knowledge about the plants grown as live fencing. Of 27 plants species documented that included shrubs, succulent shrubs and deciduous climbers, Bambusa sp. and Musa sp. were very common (95 and 80% occurrence), with potential economic value and also strong soil binding properties. The traditional biofencing practice is not only to protect the home gardens but also a part of conservation and sustainable use of biodiversity among tea garden communities

    Not Available

    No full text
    Not AvailableBackground: Castor (Ricinus communis L.) is cultivated for seed oil and to feed (leaves) Eri silkworm, Samia ricini (Donovan) Hutt. Alternaria blight affects castor cultivation resulting substantial yield loss (~30%). Uses of synthetic fertilizers and agrochemicals for disease management have serious concerns as the castor leaves are fed to eri silkworms for rearing. Application of plant growth promoting rhizobacteria for disease suppression and to enhance plant growth will be a healthier choice in castor cultivation. The aim of this study was to assess the efficacy of Alternaria blight disease suppression by native rhizobacteria isolated from wasteland castor and their ability on plant growth promotion. Methodology: We isolated 50 bacterial antagonists from castor rhizosphere using the dilution plate method and evaluated their antagonistic activity against the castor blight pathogen, Alternaria ricini. Based on antimicrobial bioassay and plant growth promotion (PGP) traits (phosphate solubilization, ACC deaminase activities, production of IAA, GA3, HCN, NH3 and siderophore), salt and acid tolerance; we have chosen ten potential isolates and identified them through 16SrRNA gene sequencing and analysis. Disease suppression and plant growth studies were evaluated in pot experiments. Results and conclusion: Three isolates namely, Enterobacter hormaechei (LRP-2), Bacillus mycoides (HF-1) and B. aryabhattai (UR-6) showed potential antagonistic activities and PGP traits which were selected for disease suppression and PGP studies. Application of PGPR consortia (LRP-2þHF-1) could suppress the plants from A. ricini infection in challenged inoculation. Mix inoculation of LRP-2 and UR-6 showed synergistic effect and enhanced plant growth in pot experiments. Combinations of E. hormaechei (LRP-2), B. mycoides (HF-1) and B. aryabhattai (UR-6) can be applied as bio-control and bio-fertilizer formulation to protect castor from Alternaria blight and also to enhance plant growth.Not Availabl

    ‘Get in Early’; Biofilm and Wax Moth (Galleria mellonella) Models Reveal New Insights into the Therapeutic Potential of Clostridium difficile Bacteriophages

    Get PDF
    Clostridium difficile infection (CDI) is a global health threat associated with high rates of morbidity and mortality. Conventional antibiotic CDI therapy can result in treatment failure and recurrent infection. C. difficile produces biofilms which contribute to its virulence and impair antimicrobial activity. Some bacteriophages (phages) can penetrate biofilms and thus could be developed to either replace or supplement antibiotics. Here, we determined the impact of a previously optimized 4-phage cocktail on C. difficile ribotype 014/020 biofilms, and additionally as adjunct to vancomycin treatment in Galleria mellonella larva CDI model. The phages were applied before or after biofilm establishment in vitro, and the impact was analyzed according to turbidity, viability counts and topography as observed using scanning electron and confocal microscopy. The infectivity profiles and efficacies of orally administered phages and/or vancomycin were ascertained by monitoring colonization levels and larval survival rates. Phages prevented biofilm formation, and penetrated established biofilms. A single phage application reduced colonization causing extended longevity in the remedial treatment and prevented disease in the prophylaxis group. Multiple phage doses significantly improved the larval remedial regimen, and this treatment is comparable to vancomycin and the combined treatments. Taken together, our data suggest that the phages significantly reduce C. difficile biofilms, and prevent colonization in the G. mellonella model when used alone or in combination with vancomycin. The phages appear to be highly promising therapeutics in the targeted eradication of CDI and the use of these models has revealed that prophylactic use could be a propitious therapeutic option
    corecore