33 research outputs found

    Comment on: Baddeleyite U-Pb age and Hf isotopes, and constraints on genesis of the Panzhihua carbonatite in SW China by Wang et al. (2023)

    No full text
    International audienceWang et al. (2023) propose that rocks adjacent to the Panzhihua intrusion are not marbles and skarns, but carbonatites. If true, this interpretation could have important implications for models explaining the origin of the large Fe-Ti ore deposits in the intrusion. We reject this interpretation for two principal reasons: 1) the objects described as “mantle xenoliths”, and considered, incorrectly, as diagnostic of carbonatite, are in fact deformed and altered mafic/ultramafic intrusions; 2) the concentrations of incompatible trace elements in the marbles are low and typical of metasedimentary rocks, not carbonatite

    Proton microprobe results for the partitioning of platinum-group elements between monosulphide solid solution and sulphide liquid

    Get PDF
    Partition coefficients (D) for Ni, Cu, and platinum-group elements (PGE) between monosulphide solid solution (mss) and Fe-sulphide liquid (liq) have been determined experimentally using an electron microprobe (EMP) to analyze experimental run products. The EMP detection limit is approximately 0.05 weight per cent for the PGE, consequently few results were obtained for Pt and Ir and the precision for Pd and Rh at low concentrations was poor. These run products have been reanalyzed using a proton microprobe (PMP), which has a detection limit between 10 and 50 ppm for these elements. It is now clear that Dmss/liquid for all the elements show a strong dependence on the S content of the run in S-undersaturated and S-saturated runs. However, in S-oversaturated runs the S content of the run does not appear to influence Dmss/liq. The greater precision of the PMP data establishes that in S-oversaturated runs Dmss/liq at 1000°C are consistently higher than those at 1100°C. In contrast, Dmss/liq in the S-undersaturated and S-saturated runs are similar at both temperatures. This difference in behaviour is thought to arise because in the S-undersaturated and S-saturated runs the amount of S in the mss is controlled by the S content of the run. As the S content in the mss increases, the number of vacancies in the structure of the mss also increases, and Dmss/liq rises. In contrast, in S-oversaturated runs the mss has absorbed the maximum amount of S and thus the S content of the run no longer influences the structure of the mss and hence does not control Dmss/liq. Thus, the effect of temperature on Dmss/liqonly becomes apparent in the S-oversaturated runs. The tendency for Os, Ir, Ru and Rh to partition into mss and the exclusion of Cu, Pt and Pd from mss maybe used to explain a number of phenomena; the zonation of massive sulphide bodies, the tendency for Os, Ir, Ru and to a lesser extent Rh to be enriched in cumulates with minor sulphides, and the presence of two types of sulphides in mantle nodules (an Os-Ir -rich mss and Cu-Pd rich pentlandite). The tendency of sulphide liquids to crystallize RuOsIr and Pt-Fe minerals at low f S2 may explain the enrichment of RuOsIr in ultramafic mafic cumulate rocks in the following manner. Sulphide solubility increases as pressures falls. Thus, sulphide droplets in rising basalt magma could be partly resorbed. The PGM could crystallize from this liquid. If these PGM survive long enough, then they could be incorporated into the early cumulate phases such as olivine and chromite. This would explain both the presence of PGM in many olivine and chromite cumulates and the tendency of more evolved magmas to have high Pd/Ir ratios

    Association of Mg-rich Olivine with Magnetite as a Result of Brucite Marble Assimilation by Basaltic Magma in the Emeishan Large Igneous Province, SW China

    No full text
    An unusual feature of the magmatic Fe-Ti oxide deposits associated with layered intrusions in the Permian Emeishan large igneous province (LIP) in SW China is the association of the mineralization with olivine that is significantly more Mg-rich than those that occur elsewhere. A working hypothesis for the production of Mg-rich olivine is that significant assimilation of carbonate occurred during the formation of the Fe-Ti oxide deposits in the Emeishan LIP. This study provides several lines of supporting evidence from a coeval picritic dyke in the footwall of the Panzhihua layered intrusion at Zhujiabaobao. Country rocks to the Zhujiabaobao picritic dyke are brucite marbles. Olivine phenocrysts in the dyke have Fo contents varying from 79 to 91 mol %. The most Mg-rich olivine phenocrysts (Fo89-91) are present in the margins of the dyke and contain undissolved calcite. Olivine phenocrysts in the marginal sample show reversed zoning in Fo content and contain similar to 20% lower Ni than those with similar Fo contents in the coeval picrites emplaced in the nearby area. Olivine-hosted oxide inclusions in this sample are exclusively Cr-magnetite (calculated atomic Fe3+/Cr3+ > 1) instead of chromite or Cr-spinel (calculated atomic Fe3+/Cr3+ (Nd) values (1 center dot 4-2) but contrasting Sr isotope compositions. The sample with the most Mg-rich olivine (Fo89-90) has the highest initial Sr-87/Sr-86 ratio (0 center dot 7054), whereas samples with more Fe-rich olivine (Fo78-83) have lower initial Sr-87/Sr-86 ratios (0 center dot 7046-0 center dot 7049). The results of mixing calculations indicate that up to similar to 25 wt % assimilation of brucite marble by basaltic magma with a composition similar to that of the average of the coeval high-Ti basalts can readily explain the observed mineralogical and isotopic variations within the dyke. The results from the dyke show that carbonate assimilation by basaltic magma is an efficient way to produce the association of magnetite with olivine that is anomalously rich in magnesium

    Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid : effects of composition and temperature

    No full text
    Partitioning of Ni, Cu, and Pt-group elements (Ir, Rh, Pt, Pd) between monosulfide solid solution (Mss) and sulfide liquid has been investigated in the Fe-Ni-Cu-S system at 1000 and 1100°C and one atmosphere pressure. The Nernst partition coefficients (D = wt% in Mss/wt% in sulfide liquid) for Ni vary significantly from 0.19 to 1.17, while the values of DCu show a limited range of 0.17–0.27. The partition coefficients for Ir range from 1.06 to 13. Rhodium has a partition coefficient slightly lower than that of Ir under the same conditions, ranging from 0.37 to 8.23. The partition coefficients for Pt and Pd vary from 0.05 to 0.16, and from 0.08 to 0.27, respectively. The partition coefficients depend strongly on the bulk S contents of the system. They increase with increasing S contents in both Mss and liquid. Platinum, Pd, and Cu behave incompatibly during Mss crystallization, strongly partitioning into sulfide liquid. Nickel is incompatible in S-undersaturated systems and S-saturated systems. It becomes compatible when the system is S-oversaturated. Rhodium is compatible in S-saturated and S-oversaturated systems, but incompatible in S-undersaturated systems. Iridium changes from highly compatible through moderately compatible to slightly compatible when the system changes from S-oversaturated through S-saturated to S-undersaturated. The effect of temperature on metal partitioning is observed only in S-oversaturated systems, in which the partition coefficients for Ni and Rh increase with decrease of temperature. The compatible behavior of Ir and Rh, and incompatible behavior of Pt and Pd and Cu under S-saturated conditions appears to support the hypothesis that the observed metal zonation in many sulfide ore deposits such as Sudbury, Ontario and Noril’sk, Siberia resulted from sulfide liquid fractionation
    corecore