63 research outputs found

    Small contribution of gold mines to the ongoing tuberculosis epidemic in South Africa: a modeling-based study.

    Get PDF
    BACKGROUND: Gold mines represent a potential hotspot for Mycobacterium tuberculosis (Mtb) transmission and may be exacerbating the tuberculosis (TB) epidemic in South Africa. However, the presence of multiple factors complicates estimation of the mining contribution to the TB burden in South Africa. METHODS: We developed two models of TB in South Africa, a static risk model and an individual-based model that accounts for longer-term trends. Both models account for four populations - mine workers, peri-mining residents, labor-sending residents, and other residents of South Africa - including the size and prevalence of latent TB infection, active TB, and HIV of each population and mixing between populations. We calibrated to mine- and country-level data and used the static model to estimate force of infection (FOI) and new infections attributable to local residents in each community compared to other residents. Using the individual-based model, we simulated a counterfactual scenario to estimate the fraction of overall TB incidence in South Africa attributable to recent transmission in mines. RESULTS: We estimated that the majority of FOI in each community is attributable to local residents: 93.9% (95% confidence interval 92.4-95.1%), 91.5% (91.4-91.5%), and 94.7% (94.7-94.7%) in gold mining, peri-mining, and labor-sending communities, respectively. Assuming a higher rate of Mtb transmission in mines, 4.1% (2.6-5.8%), 5.0% (4.5-5.5%), and 9.0% (8.8-9.1%) of new infections in South Africa are attributable to gold mine workers, peri-mining residents, and labor-sending residents, respectively. Therefore, mine workers with TB disease, who constitute ~ 2.5% of the prevalent TB cases in South Africa, contribute 1.62 (1.04-2.30) times as many new infections as TB cases in South Africa on average. By modeling TB on a longer time scale, we estimate 63.0% (58.5-67.7%) of incident TB disease in gold mining communities to be attributable to recent transmission, of which 92.5% (92.1-92.9%) is attributable to local transmission. CONCLUSIONS: Gold mine workers are estimated to contribute a disproportionately large number of Mtb infections in South Africa on a per-capita basis. However, mine workers contribute only a small fraction of overall Mtb infections in South Africa. Our results suggest that curtailing transmission in mines may have limited impact at the country level, despite potentially significant impact at the mining level

    Impact of Targeted Tuberculosis Vaccination Among a Mining Population in South Africa: A Model-Based Study.

    Get PDF
    Optimizing the use of new tools, such as vaccines, may play a crucial role in reaching global targets for tuberculosis (TB) control. Some of the most promising candidate vaccines target adults, although high-coverage mass vaccinations may be logistically more challenging among this population than among children. Vaccine-delivery strategies that target high-risk groups or settings might yield proportionally greater impact than do those that target the general population. We developed an individual-based TB transmission model representing a hypothetical population consisting of people who worked in South African gold mines or lived in associated labor-sending communities. We simulated the implementation of a postinfection adult vaccine with 60% efficacy and a mean effect duration of 10 years. We then compared the impact of a mine-targeted vaccination strategy, in which miners were vaccinated while in the mines, with that of a community-targeted strategy, in which random individuals within the labor-sending communities were vaccinated. Mine-targeted vaccination averted an estimated 0.37 TB cases per vaccine dose compared with 0.25 for community-targeted vaccination, for a relative efficacy of 1.46 (95% range, 1.13-1.91). The added benefit of mine-targeted vaccination primarily reflected the disproportionate demographic burden of TB among the population of adult males as a whole. As novel vaccines for TB are developed, venue-based vaccine delivery that targets high-risk demographic groups may improve both vaccine feasibility and the impact on transmission

    Tuberculosis control in South African gold mines: mathematical modeling of a trial of community-wide isoniazid preventive therapy.

    Get PDF
    A recent major cluster randomized trial of screening, active disease treatment, and mass isoniazid preventive therapy for 9 months during 2006-2011 among South African gold miners showed reduced individual-level tuberculosis incidence but no detectable population-level impact. We fitted a dynamic mathematical model to trial data and explored 1) factors contributing to the lack of population-level impact, 2) the best-achievable impact if all implementation characteristics were increased to the highest level achieved during the trial ("optimized intervention"), and 3) how tuberculosis might be better controlled with additional interventions (improving diagnostics, reducing treatment delay, providing isoniazid preventive therapy continuously to human immunodeficiency virus-positive people, or scaling up antiretroviral treatment coverage) individually and in combination. We found the following: 1) The model suggests that a small proportion of latent infections among human immunodeficiency virus-positive people were cured, which could have been a key factor explaining the lack of detectable population-level impact. 2) The optimized implementation increased impact by only 10%. 3) Implementing additional interventions individually and in combination led to up to 30% and 75% reductions, respectively, in tuberculosis incidence after 10 years. Tuberculosis control requires a combination prevention approach, including health systems strengthening to minimize treatment delay, improving diagnostics, increased antiretroviral treatment coverage, and effective preventive treatment regimens

    Tuberculosis Prevention in South Africa

    Get PDF
    Background South Africa has one of the highest per capita rates of tuberculosis (TB) incidence in the world. In 2012, the South African government produced a National Strategic Plan (NSP) to control the spread of TB with the ambitious aim of zero new TB infections and deaths by 2032, and a halving of the 2012 rates by 2016. Methods We used a transmission model to investigate whether the NSP targets could be reached if immediate scale up of control methods had happened in 2014. We explored the potential impact of four intervention portfolios; 1) “NSP” represents the NSP strategy, 2) “WHO” investigates increasing antiretroviral therapy eligibility, 3) “Novel Strategies” considers new isoniazid preventive therapy strategies and HIV “Universal Test and Treat” and 4) “Optimised” contains the most effective interventions. Findings We find that even with this scale-up, the NSP targets are unlikely to be achieved. The portfolio that achieved the greatest impact was “Optimised”, followed closely by “NSP”. The “WHO” and “Novel Strategies” had little impact on TB incidence by 2050. Of the individual interventions explored, the most effective were active case finding and reductions in pre-treatment loss to follow up which would have a large impact on TB burden. Conclusion Use of existing control strategies has the potential to have a large impact on TB disease burden in South Africa. However, our results suggest that the South African TB targets are unlikely to be reached without new technologies. Despite this, TB incidence could be dramatically reduced by finding and starting more TB cases on treatment

    Application of provincial data in mathematical modelling to inform sub-national tuberculosis program decision-making in South Africa.

    Get PDF
    South Africa has the highest tuberculosis (TB) disease incidence rate in the world, and TB is the leading infectious cause of death. Decisions on, and funding for, TB prevention and care policies are decentralised to the provincial governments and therefore, tools to inform policy need to operate at this level. We describe the use of a mathematical model planning tool at provincial level in a high HIV and TB burden country, to estimate the impact on TB burden of achieving the 90-(90)-90 targets of the Stop TB Partnership Global Plan to End TB. "TIME Impact" is a freely available, user-friendly TB modelling tool. In collaboration with provincial TB programme staff, and the South African National TB Programme, models for three (of nine) provinces were calibrated to TB notifications, incidence, and screening data. Reported levels of TB programme activities were used as baseline inputs into the models, which were used to estimate the impact of scale-up of interventions focusing on screening, linkage to care and treatment success. All baseline models predicted a trend of decreasing TB incidence and mortality, consistent with recent data from South Africa. The projected impacts of the interventions differed by province and were greatly influenced by assumed current coverage levels. The absence of provincial TB burden estimates and uncertainty in current activity coverage levels were key data gaps. A user-friendly modelling tool allows TB burden and intervention impact projection at the sub-national level. Key sub-national data gaps should be addressed to improve the quality of sub-national model predictions

    Correction to: Small contribution of gold mines to the ongoing tuberculosis epidemic in South Africa: a modeling-based study.

    Get PDF
    The original article [1] did not contain comprehensive information regarding two authors' affiliations that may be considered a potential competing interest

    Causes and Outcomes of Admission and Investigation of Tuberculosis in Adults with Advanced HIV in South African Hospitals: Data from the TB Fast Track Trial.

    Get PDF
    Tuberculosis (TB) remains the leading cause of hospitalization and in-hospital mortality in HIV-positive adults. Using data from hospital and clinic files, research databases, and autopsy, we describe causes and outcomes of admissions, and assess investigations for TB among adults with advanced HIV who were hospitalized after enrollment into the TB Fast Track trial in South Africa (2013-2015). A total of 251 adults [median CD4 count, 37.5 cells/μL; interquartile range, 14-68 cells/µL; 152 (60.6%) on antiretroviral therapy] experienced 304 admissions. Ninety-five of 251 of the first admissions (37.8%) were TB related; the next most common causes were AIDS-related illnesses (41 of 251, 16.3%) and surgical causes (21 of 251, 8.4%). Of those admitted with previously undiagnosed TB, 60% had CD4 counts less than 50 cells/µL. Overall, 137 of 251 individuals died as inpatients or within 90 days of their first discharge. Case fatality rates were particularly high for those admitted with TB (66%) and bacterial infections (80%). In 144 admissions for whom anti-TB treatment had not been started before admission, a sputum-based TB investigation was recorded in only 12 of 57 admissions (21.1%) in whom one or more TB symptom was recorded (24 of 57 started on treatment), and 6 of 87 admissions (6.9%) in whom no TB symptoms were recorded (14 of 87 started on treatment). Hospitalized adults with advanced HIV are at high risk of death. TB was a common cause of hospitalization but was under-investigated, even in those with symptoms. In addition to early identification of TB and other AIDS-related illnesses during hospitalization of adults with advanced HIV, improved pre-hospital management strategies are needed to interrupt disease progression and reduce poor outcomes in this already vulnerable population

    Four models of HIV counseling and testing: utilization and test results in South Africa.

    Get PDF
    BACKGROUND: HIV Counseling and Testing (HCT) is the point-of-entry for pathways of HIV care and prevention. However, HCT is not reaching many who are HIV infected and this may be related to the HCT provision model. We describe HCT utilization and HIV diagnosis using four models of HCT delivery: clinic-based, urban mobile, rural mobile, and stand-alone. METHODS: Using cross-sectional data from routine HCT provided in South Africa, we described client characteristics and HIV test results from information collected during service delivery between January 2009 and June 2012. RESULTS: 118,358 clients received services at clinic-based units, 18,597; stand-alone, 28,937; urban mobile, 38,840; and rural mobile, 31,984. By unit, clients were similar in terms of median age (range 28-31), but differed in sex distribution, employment status, prior testing, and perceived HIV risk. Urban mobile units had the highest proportion of male clients (52%). Rural mobile units reached the highest proportion of clients with no prior HCT (61%) and reporting no perceived HIV risk (64%). Overall, 10,862 clients (9.3%) tested HIV-positive. CONCLUSIONS: Client characteristics varied by HCT model. Importantly, rural and urban mobile units reached more men, first-time testers, and clients who considered themselves to be at low risk for HIV

    Pregnancy Incidence and Correlates during the HVTN 503 Phambili HIV Vaccine Trial Conducted among South African Women

    Get PDF
    HIV prevention trials are increasingly being conducted in sub-Saharan Africa. Women at risk for HIV are also at risk of pregnancy. To maximize safety, women agree to avoid pregnancy during trials, yet pregnancies occur. Using data from the HVTN 503/"Phambili" vaccine trial, we report pregnancy incidence during and after the vaccination period and identify factors, measured at screening, associated with incident pregnancy.To enrol in the trial, women agreed and were supported to avoid pregnancy until 1 month after their third and final vaccination ("vaccination period"), corresponding to the first 7 months of follow-up. Unsterilized women, pooled across study arms, were analyzed. Poisson regression compared pregnancy rates during and after the vaccination period. Cox proportional hazards regression identified associations with first pregnancy.Among 352 women (median age 23 yrs; median follow-up 1.5 yrs), pregnancy incidence was 9.6/100 women-years overall and 6.8/100 w-yrs and 11.3/100 w-yrs during and after the vaccination period, respectively [Rate Ratio = 0.60 (0.32-1.14), p = 0.10]. In multivariable analysis, pregnancy was reduced among women who: enrolled at sites providing contraception on-site [HR = 0.43, 95% CI (0.22-0.86)]; entered the trial as injectable contraceptive users [HR = 0.37 (0.21-0.67)] or as consistent condom users (trend) [HR = 0.54 (0.28-1.04)]. Compared with women with a single partner of HIV-unknown status, pregnancy rates were increased among women with: a single partner whose status was HIV-negative [HR = 2.34(1.16-4.73)] and; 2 partners both of HIV-unknown status [HR = 4.42(1.59-12.29)]. Women with 2 more of these risk factors: marijuana use, heavy drinking, or use of either during sex, had increased pregnancy incidence [HR = 2.66 (1.24-5.72)].It is possible to screen South African women for pregnancy risk at trial entry. Providing injectable contraception for free on-site and supporting consistent condom use may reduce incident pregnancy. Screening should determine the substance use, partnering, and HIV status of both members of the couple for both pregnancy and HIV prevention.SA National Health Research Database DOH-27-0207-1539; Clinicaltrials.gov NCT00413725

    The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis.

    Get PDF
    Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues
    corecore