13 research outputs found

    Individual Professional Practice in the Company

    Get PDF
    Import 23/08/2017Cílem této bakalářské práce je popsat absolvování odborné praxe ve firmě HS Interactive s.r.o. Praxe byla zaměřena na vývoj mobilní aplikace pro operační systém Android. Aplikace je mobilním klientem pro sociální síť MatchToMe. V úvodu popisuji důvody, které vedly k výběru odborné praxe. Dále se věnuji úkolům, které mi byly zadány s jejich implementací a postupem řešení problémů, které se objevily při vývoji. Závěr práce je věnován zhodnocení získaných zkušeností a dosažených výsledků.Purpose of this bachelor thesis is to describe a professional practice in company HS Interactive s.r.o. Practice was focused on the development of mobile application for the operating system Android. The application is a mobile client for social network MatchToMe. In the introduction I describe reasons that led to the selection of professional practice. Then I describe tasks that I have been awarded with their implementations and process of solution issues that have emerged during development. The conclusion of thesis is dedicated to the evaluation of the experience gained and the results achieved.440 - Katedra telekomunikační technikyvýborn

    Observation of topology transition in Floquet non-Hermitian skin effects in silicon photonics

    No full text
    Non-Hermitian physics has greatly enriched our understanding of nonequilibrium phenomena and uncovered novel effects such as the non-Hermitian skin effect (NHSE) that has profoundly revolutionized the field. NHSE is typically predicted in systems with nonreciprocal couplings which, however, are difficult to realize in experiments. Without nonreciprocal couplings, the NHSE can also emerge in systems with coexisting gauge fields and loss or gain (e.g., in Floquet non-Hermitian systems). However, such Floquet NHSE remains largely unexplored in experiments. Here, we realize the Floquet NHSEs in periodically modulated optical waveguides integrated on a silicon photonics platform. By engineering the artificial gauge fields induced by the periodical modulation, we observe various Floquet NHSEs and unveil their rich topological transitions. Remarkably, we discover the transitions between the normal unipolar NHSEs and an unconventional bipolar NHSE which is accompanied by the directional reversal of the NHSEs. The underlying physics is revealed by the band winding in complex quasienergy space which undergoes a topology change from isolated loops with the same winding to linked loops with opposite windings. Our work unfolds a new route toward Floquet NHSEs originating from the interplay between gauge fields and dissipation effects and offers fundamentally new ways for steering light and other waves

    miR-155-induced autophagy promotes the elimination of intracellular mycobacteria.

    No full text
    <p>(A and B) RAW 264.7 cells were transiently transfected with control or miR-155 mimic for 24 h, and then incubated with DMSO or 3-MA for 2 h. Protein levels of LC3 were detected by Western-blot in uninfected cells (A). Intracellular mycobacterial viability was determined at the indicated timepoints by CFU assay after BCG challenge for 1 h (B). (C and D) RAW 264.7 cells were transiently co-transfected with control or miR-155 mimic together with a control siRNA or Atg7 siRNA. The expression levels of Atg7 and LC3 were detected by Western-blot (C). Intracellular mycobacterial viability was determined by CFU assay at the indicated time after challenging with BCG for 1 h (D). Values of LC3-II/β-actin ratios are indicated below the representative blot. Data are shown as the mean ± SEM of three independent experiments. *, p<0.05; **, p<0.01; NS, not significant.</p

    miR-155 post-transcriptionally represses Rheb expression by targeting its 3′UTR.

    No full text
    <p>(A) Sequences of mouse and human miR-155 and their predicted interactions with conserved 7-mer 1A miR-155 seeds found within the Rheb 3′UTRs of different species are shown. The sequence of the Rheb 3′UTR seed mutant used for the reporter assays and the predicted disruption of the miR-155 interaction are also shown. (B) RAW264.7 cells were co-transfected with control or miR-155 mimic and a wild-type (WT-Rheb) or mutated Rheb 3′UTR (mut-Rheb) luciferase reporter plasmid and assessed for luciferase activity at 24 h after transfection. Data are shown as the mean ± SEM of three independent experiments. ***, p<0.001; NS, not significant. (C–F) RAW264.7 cells were transfected with miR-155 mimic (C and E) or inhibitor (D and F) for 24 h and either left uninfected or infected with BCG. Protein expression levels of Rheb were detected by Western-blot. Values of Rheb/β-actin ratios are indicated below the representative blot (C and D), and expression levels of Rheb mRNA were detected by RT-PCR (E and F).</p

    miR-155 induces autophagy in macrophages.

    No full text
    <p>(A–D) RAW264.7 cells were transfected with miR-155 mimic (A and C) or inhibitor (B and D) for 24 h and then either left uninfected or infected with BCG. Expression levels of miR-155 were detected by real-time PCR (A and B). The LC3 levels were detected by Western-blot, and the ratios of LC3-II/β-actin were calculated as shown below the representative blot (C and D). (E and F) RAW264.7 cells transfected with miR-155 mimic (E) or inhibitor (F) was incubated with DMSO or bafilomycin A1 (BafA.) at a concentration of 100 nM for 2 h, and then LC3 levels were detected by Western-blot. The ratios of LC3-II/β-actin were calculated as shown below the representative blot. ***, p<0.001.</p

    miR-155-induced autophagy promotes the co-localization of BCG with autophagosomes by suppressing Rheb expression.

    No full text
    <p>(A) RAW264.7 cells were transfected with a plasmid expressing Rheb for 24 h, and then incubated with DMSO or BafA. for 2 h. The expression levels of Rheb and LC3 were detected by Western-blot. Values of LC3-II/β-actin ratios are indicated below the representative blot. (B and C) RAW264.7 cells were co-transfected with control or miR-155 mimic together with a control plasmid or a plasmid expressing Rheb for 24 h, and then infected with Texas Red-labeled BCG for 1 h. The co-localization of BCG and MDC-labeled autophagosome was detected by confocal microscopy. Arrows indicate Quantification of BCG co-localization with autophagosomes described in B is shown (C). (D) RAW264.7 cells were co-transfected with control or miR-155 mimic together with a control plasmid or a plasmid expressing Rheb for 24 h. Cells were infected with BCG for 1 h, and washed for three times to remove extracellular mycobacteria. Intracellular mycobacterial viability was determined by CFU assay at the indicated timepoints. Data are shown as the mean ± SEM of three independent experiments. *, p<0.05; **, p<0.01; NS, not significant.</p

    miR-155 promotes mycobacterial phagosome maturation.

    No full text
    <p>RAW 264.7 cells were transiently transfected with control or miR-155 mimic for 24 h and then infected with Texas Red-labeled BCG for 1 h. Lysosomes were immunolabeled with CD63 antibody followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG antibody (A), or labeled with a fluorogenic substrate for proteases, DQ-Green (C). The colocalization of BCG with lysosome was detected by confocal microscopy. The percentage of co-localization of BCG with CD63-positive (B) or DQ-Green labeled (D) lysosomes was quantified, respectively. Cells treated with rapamycin were used as a positive control. Arrows indicate the co-localization of BCG with lysosomes; scale bar = 5 µm. Quantification of data are shown as the mean ± SEM of three independent experiments (n = 100 phagosomes). **, p<0.01.</p

    miR-155-induced autophagy promotes the formation of mycobacterial autophagosomes.

    No full text
    <p>(A) RAW264.7 cells stably expressing GFP-LC3 were transiently transfected with control or miR-155 mimic and then infected with Texas Red-labeled BCG for 1 h. The co-localization of BCG with LC3 was detected by confocal microscopy. (B) Quantification of the co-localization of BCG with LC3-positive autophagosomes is shown. (C) RAW264.7 cells were transiently transfected with control or miR-155 mimic, and then infected with Texas Red-labeled BCG for 1 h. Endogenous LC3 was stained with LC3 antibody followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG (Green). The co-localization of BCG with endogenous LC3 was detected by confocal microscopy. (D) Quantification of the co-localization of BCG with LC3-positive autophagosomes is shown. (E) After transient transfection with control or miR-155 mimic, RAW264.7 cells were infected with Texas Red-labeled BCG for 1 h, and then were labeled with a specific fluorescent dye MDC (50 µM) for autophagic vacuoles. The co-localization of BCG with MDC-positive autophagic vacuoles was detected by confocal microscopy. (F) Quantification of the co-localization of BCG with MDC-positive autophagosomes is shown. Cells treated with rapamycin were used as a positive control. Arrows indicate the co-localization of BCG with autophagosomes; scale bar = 5 µm. Data are shown as the mean ± SEM of three independent experiments (n = 100 phagosomes). **, p<0.01; ***, p<0.001.</p

    miR-155 expression is induced after mycobacterial infection.

    No full text
    <p>(A) miR-155 expression levels were examined in the lungs of normal uninfected or H37Rv infected BALB/c mice 6 weeks postinfection. (B) Murine bone marrow-derived macrophages (BMDMs) were infected with BCG at an MOI of 5 for the indicated times, and the expression levels of miR-155 were measured by real-time PCR. (C and D) RAW264.7 cells were infected with BCG at an MOI of 5 for the indicated time points (C) or at indicated MOIs for 24 h (D). The expression levels of miR-155 were examined by real-time PCR. (E and F) RAW264.7 cells were infected with H37Ra at an MOI of 5 for the indicated time (E) or at indicated MOI for 24 h (F). The expression levels of miR-155 were examined by real-time PCR. Data are shown as the mean ± SEM of three independent experiments. *, p<0.05; **, p<0.01; ***, p<0.001.</p
    corecore