182 research outputs found

    The effect of combination therapy of allicin and fenofibrate on high fat diet-induced vascular endothelium dysfunction and liver damage in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is designed to investigate the effects of combination therapy of allicin and fenofibrate on the endothelial and liver functions in rats with hyperlipidemia.</p> <p>Methods</p> <p>The healthy male Wistar rats fed high fat diet were treated with fenofibrate (80 mg/kg per day) alone, allicin (60 mg/kg per day) alone and a lower dasage of combined therapy (allicin 20 mg/kg per day and fenofibrate 30 mg/kg per day) respectively for 8 weeks. The serum levels of cholesterol, triglyceride, nitrogen oxidative, alanine transferase (ALT) and aspartate transferase (AST) were determined. Acetylcholine-induced endothelium-dependent vascular relaxation (EDVR) of aorta rings was tested, and the morphologic changes of liver tissue were observed.</p> <p>Results</p> <p>Compared with high fat diet control, fenofibrate alone or the combined therapy increased remarkably the levels of high density lipoprotein respectively (P < 0.05). Both single and combined therapy of fenofibrate and allicin significantly enhanced the levels of NO (P < 0.01 or P < 0.05), but the combined therapy had greatest high EDVR responses (P < 0.01). Furthermore, the reduced levels of ALT and AST were significantly obvious in the combined therapy groups (P < 0.01 or P < 0.05). In addition, the lower dosage of combined therapy significantly ameliorated severe fatty degeneration of liver cells occurred in the high fat diet fed rat although the single fenofibrate treatment showed spotty necrosis of liver cells and bile duct expansion.</p> <p>Conclusion</p> <p>Combination therapy with allicin and fenofibrate can effectively enhance the protective effects on endothelial function and reduce the hepatic damage in rats with hyperlipidemia.</p

    Preparation of Mesoporous V2O5@TiO2 Composites with Enhanced Photoactivity for Gaseous Benzene Degradation

    Get PDF
    AbstractMesoporous V2O5@TiO2 composites were fabricated by an ultrasonic method with V2O5 sol as the guest precursor. The prepared materials were characterized by powder X-ray diffraction, field emission-scanning electron microscopy, transmission electron microscope, X-ray photoelectron spectroscopy, UV-Vis spectroscopy and nitrogen sorption analysis. The results indicated that V2O5 nanoparticles dispersed well on/into the porous structure of TiO2 matrix. The composites presented typical IUPAC IV isotherms with type H2 hysteresis loops, revealing the mesoporous structure. It was observed that V2O5 loading led to red shift of the absorption edge to 540nm and reduced the band gap < 3.0eV. The V2O5@TiO2 composites with V/Ti molar ratio of 0.1 exhibited outstanding degradation efficiency of gaseous benzene

    GEFT Inhibits Autophagy and Apoptosis in Rhabdomyosarcoma via Activation of the Rac1/Cdc42-mTOR Signaling Pathway

    Get PDF
    Autophagy and apoptosis are dynamic processes that determine the fate of cells, and regulating these processes can treat cancer. GEFT is highly expressed in rhabdomyosarcoma (RMS), which accelerates the tumorigenicity and metastasis of RMS by activating Rac1/Cdc42 signaling, but the regulatory mechanisms of autophagy and apoptosis are unclear. In our study, we found that the RMS tissues had high Rac1, Cdc42, mTOR, and Bcl-2 expression levels and low Beclin1, LC3, and Bax expression levels compared with the normal striated muscle tissues (P &lt; 0.05). In addition, multivariate analysis has proven that Rac1 is an independent prognostic factor (P &lt; 0.05), and the high expression level of the Beclin1 protein was closely associated with the tumor diameter of the RMS patients (P = 0.044), whereas the high expression level of the LC3 protein was associated with the clinical stage of the RMS patients (P = 0.027). Furthermore, GEFT overexpression could inhibit autophagy and apoptosis in RMS. A Rac1/Cdc42 inhibitor was added, and the inhibition of autophagy and apoptosis decreased. Rac1 and Cdc42 could regulate mTOR to inhibit autophagy and apoptosis in RMS. Overall, these studies demonstrated that the GEFT–Rac1/Cdc42–mTOR pathway can inhibit autophagy and apoptosis in RMS and provide evidence for innovative treatments

    Detection of various fusion genes by one-step RT-PCR and the association with clinicopathological features in 242 cases of soft tissue tumor

    Get PDF
    Introduction: Over the past decades, an increasing number of chromosomal translocations have been found in different STSs, which not only has value for clinical diagnosis but also suggests the pathogenesis of STS. Fusion genes can be detected by FISH, RT-PCR, and next-generation sequencing. One-step RT-PCR is a convenient method to detect fusion genes with higher sensitivity and lower cost.Method: In this study, 242 cases of soft tissue tumors were included, which were detected by one-step RT-PCR in multicenter with seven types of tumors: rhabdomyosarcoma (RMS), peripheral primitive neuroectodermal tumor (pPNET), synovial sarcoma (SS), myxoid liposarcomas (MLPS), alveolar soft part sarcoma (ASPS), dermatofibrosarcoma protuberans (DFSP), and soft tissue angiofibroma (AFST). 18 cases detected by one-step RT-PCR were further tested by FISH. One case with novel fusion gene detected by RNA-sequencing was further validated by one-step RT-PCR.Results: The total positive rate of fusion genes was 60% (133/213) in the 242 samples detected by one-step RT-PCR, in which 29 samples could not be evaluated because of poor RNA quality. The positive rate of PAX3–FOXO1 was 88.6% (31/35) in alveolar rhabdomyosarcoma, EWSR1–FLI1 was 63% (17/27) in pPNET, SYT–SSX was 95.4% in SS (62/65), ASPSCR1–TFE3 was 100% in ASPS (10/10), FUS–DDIT3 was 80% in MLPS (4/5), and COL1A1–PDGFB was 66.7% in DFSP (8/12). For clinicopathological parameters, fusion gene status was correlated with age and location in 213 cases. The PAX3–FOXO1 fusion gene status was correlated with lymph node metastasis and distant metastasis in RMS. Furthermore, RMS patients with positive PAX3–FOXO1 fusion gene had a significantly shorter overall survival time than those patients with the negative fusion gene. Among them, the FISH result of 18 cases was concordant with one-step RT-PCR. As detected as the most common fusion types of AHRR–NCOA2 in one case of AFST were detected as negative by one-step RT-PCR. RNA-sequencing was used to determine the fusion genes, and a novel fusion gene PTCH1–PLAG1 was found. Moreover, the fusion gene was confirmed by one-step RT-PCR.Conclusion: Our study indicates that one-step RT-PCR displays a reliable tool to detect fusion genes with the advantage of high accuracy and low cost. Moreover, it is a great tool to identify novel fusion genes. Overall, it provides useful information for molecular pathological diagnosis and improves the diagnosis rate of STSs

    Analysis of the optimal operation frequency with lowest time-delay jitter for an electrically triggered field-distortion spark gap

    Get PDF
    This work was stimulated by the assumption that for a gas-filled spark gap closing switch operating at a high repetition frequency, there is an optimal frequency range in which the time-delay jitter reaches a minimum value. The experiments to test this assumption use an electrically triggered, field-distortion spark gap filled with the SF6/N2 gas mixture. The results show that indeed, the time-delay jitter decreases for a range of frequencies for which the filling gas can substantially restore the interelectrode insulation before increasing at a higher operation frequency. The experimental results demonstrate the correctness of the abovepresented assumption: the time-delay jitter of the field-distortion spark gap has its minimum when the unit operates in the repetition frequency range between 20 and 30 Hz. Since the recovery time depends on the gas species and the gap distance, the optimum operation frequency range should also vary depending on the spark-gap distance and the filling gas properties

    Primary lipoblastic nerve sheath tumor in an inguinal lymph node mimicking metastatic tumor: a case report and literature review

    Get PDF
    Lipoblastic nerve sheath tumors of soft tissue are characterized as schwannoma tumors that exhibit adipose tissue and lipoblast-like cells with signet-ring morphology. They have been documented to arise in various anatomic locations, including the thigh, groin, shoulder, and retroperitoneum. However, to our knowledge, this tumor has not been previously reported as a lymph node primary. We present herein the first case of a benign primary lipoblastic nerve sheath tumor arising in an inguinal lymph node in a 69-year-old man. Microscopic examination revealed a multinodular tumor comprising fascicles of spindle cells, as well as adipocytic and lipoblast-like signet-ring cell component in the context of schwannoma. Despite the presence of some bizarre cells with nuclear atypia, no obvious mitotic activity or necrosis was observed. Immunohistochemical analysis showed strong and diffuse expression of S-100, SOX10, CD56, and NSE in the spindle cells as well as in the signet-ring lipoblast-like cells and the mature adipocytes. Sequencing analysis of the neoplasm identified six non-synonymous single nucleotide variant genes, specifically NF1, BRAF, ECE1, AMPD3, CRYAB, and NPHS1, as well as four nonsense mutation genes including MRE11A, CEP290, OTOA, and ALOXE3. The patient remained alive and well with no evidence of recurrence over a period of ten-year follow-up

    Acceptability and feasibility of smartphone-assisted 24 h recalls in the Chinese population

    Get PDF
    Abstract Objective To examine the acceptability and feasibility of using smartphone technology to assess beverage intake and evaluate whether the feasibility of smartphone use is greater among key sub-populations. Design An acceptability and feasibility study of recording the video dietary record, the acceptability of the ecological momentary assessment (EMA), wearing smartphones and whether the videos helped participants recall intake after a cross-over validation study. Setting Rural and urban area in Shanghai, China. Subjects Healthy adults ( n 110) aged 20–40 years old. Results Most participants reported that the phone was acceptable in most aspects, including that videos were easy to use (70 %), helped with recalls (77 %), EMA reminders helped them record intake (75 %) and apps were easy to understand (85 %). However, 49 % of the participants reported that they had trouble remembering to take videos of the beverages before consumption or 46 % felt embarrassed taking videos in front of others. Moreover, 72 % reported that the EMA reminders affected their consumption. When assessing overall acceptability of using smartphones, 72 % of the participants were favourable responders. There were no statistically significant differences in overall acceptability for overweight v. normal-weight participants or for rural v. urban residents. However, we did find that the overall acceptability was higher for males (81 %) than females (61 %, P =0·017). Conclusions Our study did not find smartphone technology helped with dietary assessments in a Chinese population. However, simpler approaches, such as using photographs instead of videos, may be more feasible for enhancing 24 h dietary recalls

    Interaction between Thymidylate Synthase and Its Cognate mRNA in Zebrafish Embryos

    Get PDF
    Thymidylate synthase (TS), which catalyzes the de novo synthesis of dUMP, is an important target for cancer therapy. In this report, the effects of 5-fluorouracil (5-FU) and ZD1694 on the regulation of TS gene expression were evaluated in zebrafish embryos. Our results revealed that the expression of TS was increased by about six-fold when embryos were treated with 1.0 µM 5-FU and there was a greater than 10-fold increase in the TS protein level after treatment with 0.4 µM ZD1694. Northern blot analysis confirmed that expression of TS mRNA was identical in treated or untreated embryos. Gel shift and immunoprecipitation assays revealed that zebrafish TS was specifically bound with its cognate mRNA in vitro and in vivo. We identified a 20 nt RNA sequence, TS:N20, localized to the 5′-UTR of TS mRNA, which corresponded to nt 13–32; TS:N20 bound to the TS protein with an affinity similar to that of the full-length TS mRNA. The MFold program predicted that TS:N20 formed a stable stem-loop structure similar to that of the cis-acting element found in human TS mRNA. Variant RNAs with either a deletion or mutation in the core motif of TS:N20 were unable to bind to the TS protein. In vitro translation experiments, using the rabbit lysate system, confirmed that zebrafish TS mRNA translation was significantly repressed when an excess amount of TS protein was included in the system. Additionally, a TS stability experiment confirmed that treatment of zebrafish embryos with 5-FU could increase the TS stability significantly, and the half life of TS protein was about 2.7 times longer than in untreated embryos. Our study revealed a structural requirement for the interaction of TS RNA with TS protein. These findings also demonstrated that the increase in TS protein induced by 5-FU occurs at the post-transcriptional level and that increased stability and translation efficiency both contributed to the increase in TS protein levels induced by TS inhibitors

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore