71 research outputs found

    Heterostructure Engineering in Electrode Materials for Sodium-Ion Batteries: Recent Progress and Perspectives

    Get PDF
    Sodium-ion batteries (SIBs) have stepped into the spotlight as a promising alternative to lithium-ion batteries for large-scale energy storage systems. However, SIB electrode materials, in general, have inferior performance than their lithium counterparts because Na+ is larger and heavier than Li+. Heterostructure engineering is a promising strategy to overcome this intrinsic limitation and achieve practical SIBs. We provide a brief review of recent progress in heterostructure engineering of electrode materials and research on how the phase interface influences Na+ storage and transport properties. Efficient strategies for the design and fabrication of heterostructures (in situ methods) are discussed, with a focus on the heterostructure formation mechanism. The heterostructure\u27s influence on Na+ storage and transport properties arises primarily from local distortions of the structure and chemomechanical coupling at the phase interface, which may accelerate ion/electron diffusion, create additional active sites, and bolster structural stability. Finally, we offer our perspectives on the existing challenges, knowledge gaps, and opportunities for the advancement of heterostructure engineering as a means to develop practical, high-performance sodium-ion batteries

    Carbon-Coated FeP Nanoparticles Anchored on Carbon Nanotube Networks as Anode for Long-Life Sodium-Ion Storage

    Get PDF
    A novel electrode design strategy of carbon-coated FeP particles anchored on a conducting carbon nanotube network (CNT@FePC) is designed to achieve a superior sodium ion storage. Such a unique structure demonstrated excellent long-life cycling stability (a 95% capacity retention for more than 1200 cycles at 3 A g-1) and rate capability (delivered 272 mAh g-1 at 8 A g-1)

    Multi-fault classification of rotor systems based on phase feature of axis trajectory in noisy environments

    Get PDF
    As it is difficult to distinguish multiple rotor faults with similar dynamic phenomena in noisy environments, a multi-fault classification method is proposed by combining the extracted trajectory phase feature, a parameter-optimized variational mode decomposition (VMD) method and a light gradient boosting machine (LightGBM) model. The trajectory phase feature is extracted from an axis trajectory by fusing the frequency, amplitude, and phase information related to rotor motion and can comprehensively describe the dynamic characteristics induced by different rotor faults. First, the vibration displacement signals in two orthogonal directions are collected to construct the axis trajectories with 12 rotor states including healthy, unbalance, misalignment, single crack, multiple cracks, and a mixture of them. Second, the trajectory phase feature is extracted from the vectorized axis trajectories, and the frequency spectra of trajectory phase angles under different rotor faults are analyzed through Fourier transform. Finally, a parameter-optimized VMD method combined with a LightGBM model is applied to classify multiple faults of rotor systems in different noisy environments based on the extracted trajectory phase feature. The 12 rotor states can be classified into nine categories based on the harmonic information of 1X–7X components (X is the rotating frequency of a rotor system) and other components with smaller amplitudes in the frequency spectra of trajectory phase angles. The average classification accuracy of the 12 rotor states exceeds 93.0%, and the recognition rate for each kind of fault is greater than 77.5% in noisy environments. The simulated and experimental results demonstrate the effectiveness and adaptability of the proposed multi-fault classification method. This work can provide a reference for the condition monitoring and fault diagnosis of rotor systems in engineering. </jats:p

    Elucidating the Synergic Effect in Nanoscale MoS\u3csub\u3e2\u3c/sub\u3e/TiO\u3csub\u3e2\u3c/sub\u3e Heterointerface for Na-Ion Storage

    Get PDF
    Interface engineering in electrode materials is an attractive strategy for enhancing charge storage, enabling fast kinetics, and improving cycling stability for energy storage systems. Nevertheless, the performance improvement is usually ambiguously ascribed to the “synergetic effect”, the fundamental understanding toward the effect of the interface at molecular level in composite materials remains elusive. In this work, a well-defined nanoscale MoS2/TiO2 interface is rationally designed by immobilizing TiO2 nanocrystals on MoS2 nanosheets. The role of heterostructure interface between TiO2 and MoS2 by operando synchrotron X-ray diffraction (sXRD), solid-state nuclear magnetic resonance, and density functional theory calculations is investigated. It is found that the existence of a hetero-interfacial electric field can promote charge transfer kinetics. Based on operando sXRD, it is revealed that the heterostructure follows a solid-solution reaction mechanism with small volume changes during cycling. As such, the electrode demonstrates ultrafast Na+ ions storage of 300 mAh g−1 at 10 A g−1 and excellent reversible capacity of 540 mAh g−1 at 0.2 A g−1. This work provides significant insights into understanding of heterostructure interface at molecular level, which suggests new strategies for creating unconventional nanocomposite electrode materials for energy storage systems

    Molecular Ecology of Pyrethroid Knockdown Resistance in Culex pipiens pallens Mosquitoes

    Get PDF
    Pyrethroid insecticides have been extensively used in China and worldwide for public health pest control. Accurate resistance monitoring is essential to guide the rational use of insecticides and resistance management. Here we examined the nucleotide diversity of the para-sodium channel gene, which confers knockdown resistance (kdr) in Culex pipiens pallens mosquitoes in China. The sequence analysis of the para-sodium channel gene identified L1014F and L1014S mutations. We developed and validated allele-specific PCR and the real-time TaqMan methods for resistance diagnosis. The real-time TaqMan method is more superior to the allele-specific PCR method as evidenced by higher amplification rate and better sensitivity and specificity. Significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014S mutations in the kdr gene can be used as a molecular marker for deltamethrin resistance monitoring in natural Cx. pipiens pallens populations in the East China region. The laboratory selection experiment found that L1014F mutation frequency, but not L1014S mutation, responded to deltamethrin selection, suggesting that the L1014F mutation is the key mutation conferring resistance to deltamethrin. High L1014F mutation frequency detected in six populations of Cx. pipens pallens suggests high prevalence of pyrethroid resistance in Eastern China, calling for further surveys to map the resistance in China and for investigating alternative mosquito control strategies

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Coaxial Carbon Nanotube Supported TiO\u3csub\u3e2\u3c/sub\u3e@MoO\u3csub\u3e2\u3c/sub\u3e@Carbon Core–Shell Anode for Ultrafast and High-Capacity Sodium Ion Storage

    No full text
    The sluggish kinetic in electrode materials is one of the critical challenges in achieving high-power sodium ion storage. We report a coaxial core−shell nanostructure composed of carbon nanotube (CNT) as the core and TiO2@MoO2@C as shells for a hierarchically nanoarchitectured anode for improved electrode kinetics. The 1D tubular nanostructure can effectively reduce ion diffusion path, increase electrical conductivity, accommodate the stress due to volume change upon cycling, and provide additional interfacial active sites for enhanced charge storage and transport properties. Significantly, a synergistic effect between TiO2 and MoO2 nanostructures is investigated through ex situ solid-state nuclear magnetic resonance. The electrode exhibits a good rate capability (150 mAh g−1 at 20 A g−1 ) and superior cycling stability with a reversibly capacity of 175 mAh g−1 at 10 A g−1 for over 8000 cycles

    Enhanced Hydrolysis of Cellulose in Ionic Liquid Using Mesoporous ZSM-5

    No full text
    Mesoporous ZSM-5 prepared by alkaline treatment was demonstrated as an efficient catalyst for the cellulose hydrolysis in ionic liquid (IL), affording a high yield of reducing sugar. It was demonstrated that mesoporous ZSM-5 (SiO2/Al2O3 = 38) had 76.2% cellulose conversion and 49.6% yield of total reducing sugar (TRS). In comparison, the conventional ZSM-5 had a mere 41.3% cellulose conversion with 33.2% yield of TRS. The results indicated that the important role of mesopores in zeolites in elevating the TRS yield may be due to the diffusional alleviation of cellulose macromolecules. The effects of reaction time, temperature, and the ratio of catalyst to cellulose were investigated for optimal reaction conditions. It was found that IL could enter the inner channel of mesoporous ZSM-5 to promote the generation of H+ from Brönsted acid sites, which facilitated hydrolysis. Moreover, the mesoporous ZSM-5 showed excellent reusability for catalytic cycles by means of calcination of the used one, promising for its practical applications in the hydrolysis of cellulose
    corecore