71 research outputs found

    Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium

    Get PDF
    BackgroundHeavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment.MethodsThe effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals.ResultsThe growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions.DiscussionAttributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals

    CD100 up-Regulation Induced by Interferon-α on B Cells Is Related to Hepatitis C Virus Infection

    Get PDF
    Objectives: CD100, also known as Sema4D, is a member of the semaphorin family and has important regulatory functions that promote immune cell activation and responses. The role of CD100 expression on B cells in immune regulation during chronic hepatitis C virus (HCV) infection remains unclear. Materials and Methods: We longitudinally investigated the altered expression of CD100, its receptor CD72, and other activation markers CD69 and CD86 on B cells in 20 chronic HCV-infected patients before and after treatment with pegylated interferon-alpha (Peg-IFN-α) and ribavirin (RBV) by flow cytometry. Results: The frequency of CD5+ B cells as well as the expression levels of CD100, CD69 and CD86 was significantly increased in chronic HCV patients and returned to normal in patients with sustained virological response after discontinuation of IFN-α/RBV therapy. Upon IFN-α treatment, CD100 expression on B cells and the two subsets was further up-regulated in patients who achieved early virological response, and this was confirmed by in vitro experiments. Moreover, the increased CD100 expression via IFN-α was inversely correlated with the decline of the HCV-RNA titer during early-phase treatment. Conclusions: Peripheral B cells show an activated phenotype during chronic HCV infection. Moreover, IFN-α therapy facilitates the reversion of disrupted B cell homeostasis, and up-regulated expression of CD100 may be indirectly related to HCV clearance

    Fracture Properties and Their Impacts on Performance in Carbonate Reservoir, Central Block B on the Right Bank of Amu Darya

    Get PDF
    AbstractThe Callovian-Oxfordian carbonate reservoir in central Block B on the right bank of Amu Darya is composed of different mechanical and petrophysical layers, where the tectonic fractures have major influences on both the performance and production of the low-permeability reservoir. The development of the tectonic fractures is mainly controlled by the mechanical properties of rocks (e.g., lithology, rock texture, porosity, and shale volume), and the differences in the development of tectonic fractures leading to the high production intervals are restricted preferentially due to fractured mechanical layers. Our study results show that the three main tectonic fracture systems are developed in the Callovian-Oxfordian Stage, including the fracture systems caused by extension movement, compression movement, and fold deformation. Specifically, high-angle extensional fractures and conjugate shear fractures are generally caused by extension movement, which are of small apertures and are mostly fully mineralized and have little impact on fluid flow. Medium- and low-angle extensional fractures as well as conjugate shear fractures are generally caused by compression movement where the strike is nearly parallel to the present-day maximum horizontal stress. These fractures have large aperture and good connectivity with strong flow conductivity of the fluid. However, fewer tectonic fractures are caused by fold deformation. The main properties of natural fractures, such as fracture length, fracture density, fracture aperture, fracture porosity, and stress sensitivity as well as their impacts on the Callovian-Oxfordian reservoir performances, are described herein. We conclude that the tectonic fractures have slight impacts on porosity albeit significant impacts on permeability. Hence, the well placement and well type are optimized under the guidance of the study results

    Modulating electron density of vacancy site by single Au atom for effective CO2_{2} photoreduction

    Get PDF
    The surface electron density significantly affects the photocatalytic efficiency, especially the photocatalytic CO2_{2} reduction reaction, which involves multi-electron participation in the conversion process. Herein, we propose a conceptually different mechanism for surface electron density modulation based on the model of Au anchored CdS. We firstly manipulate the direction of electron transfer by regulating the vacancy types of CdS. When electrons accumulate on vacancies instead of single Au atoms, the adsorption types of CO2_{2} change from physical adsorption to chemical adsorption. More importantly, the surface electron density is manipulated by controlling the size of Au nanostructures. When Au nanoclusters downsize to single Au atoms, the strong hybridization of Au 5d and S 2p orbits accelerates the photo-electrons transfer onto the surface, resulting in more electrons available for CO2_{2} reduction. As a result, the product generation rate of AuSA_{SA}/Cd1−x_{1-x}S manifests a remarkable at least 113-fold enhancement compared with pristine Cd1−x_{1-x}S

    Integrated development optimization model and its solving method of multiple gas fields

    No full text
    To optimize production schedule and production plan of multiple gas fields with certain amount of investment and constraints and to maximize their economic benefits under the production sharing contact (PSC) mode, a quantitative relationship was applied to describe the production performance depending on the development status of multiple gas fields in China and abroad. Furthermore, with the PSC-based net present value (NPV) as the objective function, a mixed integer nonlinear programming model for gas fields with optimized production schedule and productivity was established. An adaptive layer-embedded genetic algorithm was proposed to solve this model. Through handling the variables and constraints for solving this model and improving the genetic structure, genetic operators and termination conditions of standard genetic algorithm, modeling and solving techniques were formed for integrated and efficient development of multiple gas fields. Results obtained by three methods, i.e. multi-scheme comparison without mathematical model, standard genetic algorithm which induces penalty function to treat constraints, and adaptive layer-embedded genetic algorithm, were compared. The proposed optimization model is accurate, and the proposed layer-embedded genetic algorithm provides satisfactory convergence and calculation rate, ensuring that multiple gas fields could be exploited orderly. Key words: multiple gas fields, gas field integrated development, economic benefits, development optimization model, layer-embedded genetic algorith

    Biosafety and Antibacterial Ability of Graphene and Graphene Oxide In Vitro and In Vivo

    No full text
    Abstract In recent years, graphene (G) and graphene oxide (GO) nanoparticles have begun to be applied in surgical implant surface modification. However, biosafety and antibacterial ability of G and GO are still unclear. In this study, the biosafety of G and GO in vitro was evaluated by co-culture with bone marrow mesenchymal stem cells (BMSCs) and biosafety in vivo was observed by implanting materials into mice muscle tissue. Biosafety results showed that 10 μg/ml was the safety critical concentration for G and GO. When the concentration was more than 10 μg/ml, the cytotoxicity of G and GO showed a dose-dependent manner. Antibacterial results showed that G presented the antibacterial ability with the concentration equal to and more than 100 μg/ml; GO presented the antibacterial ability with the concentration equal to and more than 50 μg/ml. The antibacterial effect of G and GO were in a dose-dependent manner in vitro. The GO or G concentration between 50 and 100 μg/ml may be the better range to keep the balance of cytotoxicity and antibacterial ability. Our study reveals that G and GO have potential to be used in clinic with good biosafety and antibacterial properties in a certain concentration range

    Electric Vehicle Charging Infrastructure Policy Analysis in China: A Framework of Policy Instrumentation and Industrial Chain

    No full text
    As a strategic guarantee for the rapid development of electric vehicles, the construction and development of electric vehicle charging infrastructure (EVCI) is closely related to the industrial policies formulated by the government. This paper takes policy texts relevant to EVCI in China since 2014 as the research materials, taking policy instruments and the industrial chain as analysis dimensions. Policy content analysis is conducted to explore the EVCI policy content, structure characteristics of policy instruments, and evolution characteristics of EVCI policy in China. Our research reveals that China’s EVCI policy system is relatively perfect, but the use of policy instruments is not balanced and, in particular, is not coordinated with the EVCI industrial chain they supported. In this regard, the government should pay more attention to the use of demand-side policy instrument to enhance the driving force for the development of the EVCI industry. With more scientific and reasonable arrangement of the distribution and implementation of policy instruments in the EVCI industrial chain, the benign development of China’s EVCI industry can be promoted. This research contributes to strengthening the management and policy instrumentation of the central Chinese government, in order to support the realization of good governance of EVCI and the new energy vehicle development

    Characteristics of Sodium Alginate/Antarctic Krill Protein Composite Fiber Based on Cellulose Nanocrystals Modification: Rheology, Hydrogen Bond, Crystallization, Strength, and Water-Resistance

    No full text
    The purpose of adding cellulose nanocrystals (CNCs) into sodium alginate (SA) and Antarctic krill protein (AKP) system is to use the ionic cross-linking of SA and AKP and the dynamic hydrogen-bonding between them and CNCs to construct multiple cross-linking structures, to improve the water-resistance and strength of SA/AKP/CNCs composite fiber. Based on the structural viscosity index in rheological theory, the ratio of spinning solution and temperature were optimized by studying the structural viscosity index of the solution under different CNCs content and temperature, then the composite fiber was prepared by wet spinning. We found that when the content of CNCs is 0.8% and 1.2%, the temperature is 45 °C and 55 °C, the structural viscosity is relatively low. Under the optimal conditions, the intermolecular hydrogen bonds decrease with the increase of temperature. Some of the reduced hydrogen bonds convert into intramolecular hydrogen bonds. Some of them exist as free hydroxyl; increasing CNCs content increases intermolecular hydrogen bonds. With the increase of temperature, the crystallinity of composite fiber increases. The maximum crystallinity reaches 27%; the CNCs content increases from 0.8% to 1.2%, the breaking strength of composite fiber increases by 31%. The water resistance of composite fiber improves obviously, while the swelling rate is only 14%
    • …
    corecore