85 research outputs found

    Formation of dark excitons in monolayer transition metal dichalcogenides by a vortex beam: optical selection rules

    Full text link
    Monolayer transition metal dichalcogenides host tightly-bound excitons, which dominate their optoelectronic response even at room temperatures. Light beams are often used to study these materials with the polarization - often termed as the spin angular momentum of the light - providing the mechanism for exciting excitonic states. Light beams, however, can also carry an orbital angular momentum by creating helical structures of their phase front. In this work, we consider a Laguerre-Gaussian beam possessing an orbital angular momentum in addition to the spin angular momentum to create excitons in monolayer transition metal dichalcogenides. We derive optical selection rules that govern the allowed transitions to various exciton series using symmetry arguments. Our symmetry considerations show that we can create dark excitons using these high-order optical beams opening up new avenues for creating long-lived dark excitons with the potential of exploiting them in quantum information processing and storage

    Dynamic response of elastic beam to a moving pulse: finite element analysis of critical velocity

    Get PDF
    Dynamic behaviour of a semi-infinite elastic beam subjected to a moving single sinusoidal pulse was investigated by using finite element method associated with dimensionless analysis. The typical features of the equivalent stress and beam deflection were presented. It is found that the average value of maximal equivalent stress in the beam reaches its maximum value when the velocity of moving pulse is closed to a critical velocity. The critical velocity decreases as the pulse duration increases. The material, structural and load parameters influencing the critical velocity were analysed. An empirical formula of the critical velocity with respect to the speed of elastic wave, the gyration radius of the cross-section and the pulse duration was obtained

    Pressure-induced superconductivity in topological type II Dirac semimetal NiTeā‚‚

    Get PDF
    Very recently, NiTeā‚‚ has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTeā‚‚ presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties behavior of NiTeā‚‚ under high pressure attracts us. In this paper, we investigate the electrical properties of polycrystalline NiTeā‚‚ by application of pressure ranging from 3.4GPa to 54.45Gpa. Superconductivity emerges at critical pressure 12GPa with a transition temperature of 3.7K, and Tc reaches its maximum, 6.4 K, at the pressure of 52.8GPa. Comparing with the superconductivity in MoP, we purposed the possibility of topological superconductivity in NiTeā‚‚. Two superconductivity transitions are observed with pressure increasing in single crystal

    Evidences for pressure-induced two-phase superconductivity and mixed structures of NiTeā‚‚ and NiTe in type-II Dirac semimetal NiTe_(2-x) (x = 0.38 Ā± 0.09) single crystals

    Get PDF
    Bulk NiTeā‚‚ is a type-II Dirac semimetal with non-trivial Berry phases associated with the Dirac fermions. Theory suggests that monolayer NiTeā‚‚ is a two-gap superconductor, whereas experimental investigation of bulk NiTe_(1.98) for pressures (P) up to 71.2 GPa do not reveal any superconductivity. Here we report experimental evidences for pressure-induced two-phase superconductivity as well as mixed structures of NiTeā‚‚ and NiTe in Te-deficient NiTe_(2-x) (x = 0.38Ā±0.09) single crystals. Hole-dominant multi-band superconductivity with the P3M1 hexagonal-symmetry structure of NiTeā‚‚ appears at P ā‰„ 0.5 GPa, whereas electron-dominant single-band superconductivity with the P2/m monoclinic-symmetry structure of NiTe emerges at 14.5 GPa < P < 18.4 GPa. The coexistence of hexagonal and monoclinic structures and two-phase superconductivity is accompanied by a zero Hall coefficient up to āˆ¼ 40 GPa, and the second superconducting phase prevails above 40 GPa, reaching a maximum T_c = 7.8 K and persisting up to 52.8 GPa. Our findings suggest the critical role of Te-vacancies in the occurrence of superconductivity and potentially nontrivial topological properties in NiTe_(2-x)

    Service-mining based on knowledge and customer databases

    Get PDF
    This paper addresses a service-mining technique and applies this technique to improve the services of vehicle service centers. We propose a service-mining system and its data structure to discover the most important services required through analyzing service records, feedback records and the available products. The system can improve the quality of mining automatically by updating mining strategies regularly
    • ā€¦
    corecore