293 research outputs found

    TasselNet: Counting maize tassels in the wild via local counts regression network

    Full text link
    Accurately counting maize tassels is important for monitoring the growth status of maize plants. This tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating this task is required to meet the need of large-scale analysis of genotype and phenotype. In recent years, computer vision technologies have experienced a significant breakthrough due to the emergence of large-scale datasets and increased computational resources. Naturally image-based approaches have also received much attention in plant-related studies. Yet a fact is that most image-based systems for plant phenotyping are deployed under controlled laboratory environment. When transferring the application scenario to unconstrained in-field conditions, intrinsic and extrinsic variations in the wild pose great challenges for accurate counting of maize tassels, which goes beyond the ability of conventional image processing techniques. This calls for further robust computer vision approaches to address in-field variations. This paper studies the in-field counting problem of maize tassels. To our knowledge, this is the first time that a plant-related counting problem is considered using computer vision technologies under unconstrained field-based environment.Comment: 14 page

    MiR-539-5p alleviates sepsis-induced acute lung injury by targeting ROCK1

    Get PDF
    Introduction. Sepsis-induced acute lung injury (ALI) is an inflammatory process involved with simultaneous production of inflammatory cytokines and chemokines. In this study, we investigated the regulatory role of miR-539-5p in sepsis-induced ALI using a mouse model of cecal ligation puncture (CLP) and an in vitro model of primary murine pulmonary microvascular endothelial cells (MPVECs). Material and methods. Adult male C57BL/6 mice were intravenously injected with or without miR-539-5p agomir or scrambled control one week before CLP operation. MPVECs were transfected with miR-539-5p mimics or control mimics, followed by lipopolysaccharide (LPS) stimulation. ROCK1 was predicted and confirmed as a direct target of miR-539-5p using dual-luciferase reporter assay. In rescue experiment, MPVECs were co-transfected with lentiviral vector expressing ROCK1 (or empty vector) and miR-539-5p mimics 24 h before LPS treatment. The transcriptional activity of caspase-3, the apoptosis ratio, the levels of miR-539-5p, interleukin-1b (IL-1b), interleukin-6 (IL-6), and ROCK1 were assessed. Results. Compared to sham group, mice following CLP showed pulmonary morphological abnormalities, elevated production of IL-1b and IL-6, and increased caspase-3 activity and apoptosis ratio in the lung. In MPVECs, LPS stimulation resulted in a significant induction of inflammatory cytokine levels and apoptosis compared to untreated cells. The overexpression of miR-539-5p in septic mice alleviated sepsis-induced pulmonary injury, apoptosis, and inflammation. MiR-539-5p also demonstrated anti-apoptotic and anti-inflammatory effect in LPS-treated MPVECs. The upregulation of ROCK1 in MPVECs recovered miR-539-5p-suppressed caspase-3 activity and proinflammatory cytokine production. Conclusion. In conclusion, miR-539-5p alleviated sepsis-induced ALI via suppressing its downstream target ROCK1, suggesting a therapeutic potential of miR-539-5p for the management of sepsis-induced ALI

    Molecular analysis and expression of phenylalanine ammonia-lyase from poinsettia (Euphorbia pulcherrima willd.)

    Get PDF
    Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is a key regulatory enzyme that link primary and secondary metabolism in plants by catalyzing the conversion of l-phenylalanine to cinnamic acid. In this study, the cDNA and genomic DNA of PAL (named EpPAL) in poinsettia (Euphorbia pulcherrima willd.) were isolated and submitted in GenBank with accession number FJ594466 and FJ943503, respectively. The full-length of cDNA was 2429 bp with a poly (A) tail and contains a 2166-bp open reading frame (ORF) encoding 721 amino acids. The sequence of genomic DNA was 3315 bp, and the transcript was divided into two exons by an 886-bp long intron which located at 416 bp downstream initiation codon. Expression analysis of EpPAL in poinsettia revealed that expression levels were higher in roots and bracts, but lower in stems and green leaves. Meanwhile, expression levels increased in the order: green leaves - turning color leaves - bracts, which were consistent with their anthocyanin content during growth and development of bracts. The curve of diurnal variation of EpPAL expression level in bracts exhibited two highest peaks at 9:00 and 18:00, respectively, and reached the lowest level at 12:00 in a clear day. With the maturation and senescence of bracts, expression levels reduced gradually in both green leaves and bracts, but decreased more rapidly in bracts than green leaves.Keywords: Cloning, expression, phenylalanine ammonia-lyase, poinsetti
    • …
    corecore