Accurately counting maize tassels is important for monitoring the growth
status of maize plants. This tedious task, however, is still mainly done by
manual efforts. In the context of modern plant phenotyping, automating this
task is required to meet the need of large-scale analysis of genotype and
phenotype. In recent years, computer vision technologies have experienced a
significant breakthrough due to the emergence of large-scale datasets and
increased computational resources. Naturally image-based approaches have also
received much attention in plant-related studies. Yet a fact is that most
image-based systems for plant phenotyping are deployed under controlled
laboratory environment. When transferring the application scenario to
unconstrained in-field conditions, intrinsic and extrinsic variations in the
wild pose great challenges for accurate counting of maize tassels, which goes
beyond the ability of conventional image processing techniques. This calls for
further robust computer vision approaches to address in-field variations. This
paper studies the in-field counting problem of maize tassels. To our knowledge,
this is the first time that a plant-related counting problem is considered
using computer vision technologies under unconstrained field-based environment.Comment: 14 page