3,841 research outputs found

    On F-theory E_6 GUTs

    Get PDF
    We approach the Minimum Supersymmetric Standard Model (MSSM) from an E_6 GUT by using the spectral cover construction and non-abelian gauge fluxes in F-theory. We start with an E_6 singularity unfolded from an E_8 singularity and obtain E_6 GUTs by using an SU(3) spectral cover. By turning on SU(2) X U(1)^2 gauge fluxes, we obtain a rank 5 model with the gauge group SU(3) X SU(2) X U(1)^2. Based on the well-studied geometric backgrounds in the literature, we demonstrate several models and discuss their phenomenology.Comment: 42 pages, 17 tables; typos corrected, clarifications added, and references adde

    Change-Point Estimation of Nonstationary I(d) Processes

    Get PDF
    We examine the least-squares estimator of change point for nonstationary I(d) data with 0.5least-squares estimator, change point, nonstationary I(d) process, spurious change

    Improved HAC Covariance Matrix Estimation Based on Forecast Errors

    Get PDF
    We propose computing HAC covariance matrix estimators based on one-stepahead forecasting errors. It is shown that this estimator is consistent and has smaller bias than other HAC estimators. Moreover, the tests that rely on this estimator have more accurate sizes without sacrificing its power.forecast error, HAC estimator, kernel estimator, recursive residual, robust test

    Quench Dynamics of Topological Maximally-Entangled States

    Full text link
    We investigate the quench dynamics of the one-particle entanglement spectra (OPES) for systems with topologically nontrivial phases. By using dimerized chains as an example, it is demonstrated that the evolution of OPES for the quenched bi-partite systems is governed by an effective Hamiltonian which is characterized by a pseudo spin in a time-dependent pseudo magnetic field S⃗(k,t)\vec{S}(k,t). The existence and evolution of the topological maximally-entangled edge states are determined by the winding number of S⃗(k,t)\vec{S}(k,t) in the kk-space. In particular, the maximally-entangled edge states survive only if nontrivial Berry phases are induced by the winding of S⃗(k,t)\vec{S}(k,t). In the infinite time limit the equilibrium OPES can be determined by an effective time-independent pseudo magnetic field \vec{S}_{\mb{eff}}(k). Furthermore, when maximally-entangled edge states are unstable, they are destroyed by quasiparticles within a characteristic timescale in proportional to the system size.Comment: 5 pages, 3 figure
    • 

    corecore