44,484 research outputs found
Diffusivity in turbulent fluid containing two dominant scales, and compressible shear layer according to a kinetic theory
The solution of the two nonequilibrium-degree kinetic equation was first determined for the effective length scale and turbulence energy for a spatially homogeneous turbulence field with two characteristic length scales, where the source for one family of eddies exists. This solution was applied to the evaluation of the eddy diffusivity in the combustion chamber of an internal combustion engine. The result was compared with another existing solution. This was carried out to demonstrate the feasibility of obtaining an effective length-scale equation within the context of the kinetic theory. A formulation and partial solution of the compressible plane shear layer are also presented
A turbulence description of couette flow
Statistical mechanics for wall shear turbulence in couette flow based on Brownian motion and comparison with stochastic theory based on Navier-Stokes equatio
Chemical reaction in a turbulent flow field with uniform velocity gradient
Chemical reactions in turbulent flow fields with uniform velocity gradien
An analysis of turbulent diffusion flame in axisymmetric jet
The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed
Analytical and experimental study of two concentric cylinders coupled by a fluid gap
From a structural point of view a liquid coolant type nuclear reactor consists of a heavy steel vessel containing the core and related mechanical components and filled with a hot fluid. This vessel is protected from the severe environment of the core by a shielding structure, the thermal liner, which is usually a relatively thin steel cylinder concentric with the reactor vessel and separated from it by a gap filled with the coolant fluid. This arrangement leads to a potential vibration problem if the fundamental frequency, or one of the higher natural vibration frequencies, of this liner system is close to the frequency of some vibration source present in the reactor vessel. The shell rigidly clamped at its base and free at the top was investigated since it is a better description of the conditions encountered in typical reactor designs
Effects of a Novel Dental Gel on Plaque and Gingivitis: A Comparative Study.
ObjectivesThe goal of this prospective, randomized, controlled, double-blinded study was to evaluate the effects of a novel dental gel on plaque and gingival health. The dental gel was designed to (1) break up and prevent re-accumulation of microbial biofilm, and (2) inhibit metal mediated inflammation.Materials and methodsTwenty-five subjects with moderate gingival inflammation (Löe and Silness Gingival Index ≥2) and pocket depths <4 were randomly assigned to brush twice daily for 21 days with the test or the control dental gel. On Days 0, 7, 14 and 21, plaque levels (Quigley-Hein, Turesky Modification Plaque Index), gingival inflammation (Löe and Silness Gingival Index) and gingival bleeding (modified Sulcus Bleeding Index) were determined by one blinded, investigator using a pressure sensitive probe.ResultsAfter 3 weeks, all 3 clinical indices were significantly improved in both groups (P<0.05) and significantly lower in the test group (P<0.05).ConclusionThe novel dental gel formulation was provided effective plaque control and reduced gingival inflammation.Clinical relevanceA novel dentifrice formulation may be an effective tool for plaque removal and maintaining gingival health
New Predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
We extract the next-to-next-to-leading order results for spin-flip
generalized polarizabilities (GPs) of the nucleon from the spin-dependent
amplitudes for virtual Compton scattering (VCS) at in heavy
baryon chiral perturbation theory. At this order, no unknown low energy
constants enter the theory, allowing us to make absolute predictions for all
spin-flip GPs. Furthermore, by using constraint equations between the GPs due
to nucleon crossing combined with charge conjugation symmetry of the VCS
amplitudes, we get a next-to-next-to-next-to-leading order prediction for one
of the GPs. We provide estimates for forthcoming double polarization
experiments which allow to access these spin-flip GPs of the nucleon.Comment: 15 pages, 3 figure
Induced Lorentz- and CPT-violating Chern-Simons term in QED: Fock-Schwinger proper time method
Using the Fock-Schwinger proper time method, we calculate the induced
Chern-Simons term arising from the Lorentz- and CPT-violating sector of quantum
electrodynamics with a term. Our
result to all orders in coincides with a recent linear-in- calculation
by Chaichian et al. [hep-th/0010129 v2]. The coincidence was pointed out by
Chung [Phys. Lett. {\bf B461} (1999) 138] and P\'{e}rez-Victoria [Phys. Rev.
Lett. {\bf 83} (1999) 2518] in the standard Feynman diagram calculation with
the nonperturbative-in- propagator.Comment: 11 pages, no figur
- …