3,928 research outputs found

    Locality of not-so-weak coloring

    Get PDF
    Many graph problems are locally checkable: a solution is globally feasible if it looks valid in all constant-radius neighborhoods. This idea is formalized in the concept of locally checkable labelings (LCLs), introduced by Naor and Stockmeyer (1995). Recently, Chang et al. (2016) showed that in bounded-degree graphs, every LCL problem belongs to one of the following classes: - "Easy": solvable in O(logn)O(\log^* n) rounds with both deterministic and randomized distributed algorithms. - "Hard": requires at least Ω(logn)\Omega(\log n) rounds with deterministic and Ω(loglogn)\Omega(\log \log n) rounds with randomized distributed algorithms. Hence for any parameterized LCL problem, when we move from local problems towards global problems, there is some point at which complexity suddenly jumps from easy to hard. For example, for vertex coloring in dd-regular graphs it is now known that this jump is at precisely dd colors: coloring with d+1d+1 colors is easy, while coloring with dd colors is hard. However, it is currently poorly understood where this jump takes place when one looks at defective colorings. To study this question, we define kk-partial cc-coloring as follows: nodes are labeled with numbers between 11 and cc, and every node is incident to at least kk properly colored edges. It is known that 11-partial 22-coloring (a.k.a. weak 22-coloring) is easy for any d1d \ge 1. As our main result, we show that kk-partial 22-coloring becomes hard as soon as k2k \ge 2, no matter how large a dd we have. We also show that this is fundamentally different from kk-partial 33-coloring: no matter which k3k \ge 3 we choose, the problem is always hard for d=kd = k but it becomes easy when dkd \gg k. The same was known previously for partial cc-coloring with c4c \ge 4, but the case of c<4c < 4 was open

    Microsatellite instability, Epstein-Barr virus, mutation of type II transforming growth factor receptor and BAX in gastric carcinomas in Hong Kong Chinese

    Get PDF
    Conference Theme: Challenges to specialists in the 21st centurypublished_or_final_versio

    Prevalence of Psychological Problems in Chinese Peritoneal Dialysis Patients

    Get PDF

    Postoperative irradiation after implant placement: A pilot study for prosthetic reconstruction

    Get PDF
    published_or_final_versio

    Neurophysiological evidence of motor preparation in inner speech and the effect of content predictability

    Full text link
    Self-generated overt actions are preceded by a slow negativity as measured by electroencephalogram, which has been associated with motor preparation. Recent studies have shown that this neural activity is modulated by the predictability of action outcomes. It is unclear whether inner speech is also preceded by a motor-related negativity and inf luenced by the same factor. In three experiments, we compared the contingent negative variation elicited in a cue paradigm in an active vs. passive condition. In Experiment 1, participants produced an inner phoneme, at which an audible phoneme whose identity was unpredictable was concurrently presented. We found that while passive listening elicited a late contingent negative variation, inner speech production generated a more negative late contingent negative variation. In Experiment 2, the same pattern of results was found when participants were instead asked to overtly vocalize the phoneme. In Experiment 3, the identity of the audible phoneme was made predictable by establishing probabilistic expectations. We observed a smaller late contingent negative variation in the inner speech condition when the identity of the audible phoneme was predictable, but not in the passive condition. These findings suggest that inner speech is associated with motor preparatory activity that may also represent the predicted action-effects of covert actions

    Computational fluid dynamics study of bifurcation aneurysms treated with pipeline embolization device: side branch diameter study

    Get PDF
    An intracranial aneurysm, abnormal swelling of the cerebral artery, may lead to undesirable rates of mortality and morbidity upon rupture. Endovascular treatment involves the deployment of a flow-diverting stent that covers the aneurysm orifice, thereby reducing the blood flow into the aneurysm and mitigating the risk of rupture. In this study, computational fluid dynamics analysis is performed on a bifurcation model to investigate the change in hemodynamics with various side branch diameters. The condition after the deployment of a pipeline embolization device is also simulated. Hemodynamic factors such as flow velocity, pressure, and wall shear stress are studied. Aneurysms with a larger side branch vessel might have greater risk after treatment in terms of hemodynamics. Although a stent could lead to flow reduction entering the aneurysm, it would drastically alter the flow rate inside the side branch vessel. This may result in side-branch hypoperfusion subsequent to stenting. In addition, two patient-specific bifurcation aneurysms are tested, and the results show good agreement with the idealized models. Furthermore, the peripheral resistance of downstream vessels is investigated by varying the outlet pressure conditions. This quantitative analysis can assist in treatment planning and therapeutic decision-making.published_or_final_versio

    Effective single reflection peak from large diameter microfiber Bragg gratings

    Get PDF
    Version of RecordPublishe

    Contact force sensor based on microfiber Bragg grating

    Get PDF
    Version of RecordPublishe

    Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control

    Get PDF
    Author name used in this publication: C. LuAuthor name used in this publication: H. Y. Tam2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore